A unified pre-trained deep learning framework for cross-task reaction performance prediction and synthesis planning

任务(项目管理) 计算机科学 人工智能 机器学习 深度学习 工程类 系统工程
作者
Li‐Cheng Xu,Miao‐Jiong Tang,Jisun An,Fenglei Cao,Qi Yuan
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-5994908/v1
摘要

Abstract Artificial intelligence has transformed the field of precise organic synthesis. Data-driven methods, including machine learning and deep learning, have shown great promise in predicting reaction performance and synthesis planning. However, the inherent methodological divergence between numerical regression-driven reaction performance prediction and sequence generation-based synthesis planning creates formidable challenges in constructing a unified deep learning architecture. Here we present RXNGraphormer, a framework to jointly address these tasks through a unified pre-training approach. By synergizing graph neural networks for intramolecular pattern recognition with Transformer-based models for intermolecular interaction modeling, and training on 13 million reactions via a carefully designed strategy, RXNGraphormer achieves state-of-the-art performance across eight benchmark datasets for reactivity/selectivity prediction and forward-/retro-synthesis planning, as well as three external realistic datasets for reactivity and selectivity prediction. Notably, the model generates chemically meaningful embeddings that: (1) spontaneously cluster reactions by type without explicit supervision, and (2) reveal structure-performance relationships through post-hoc interpretation. This work bridges the critical gap between performance prediction and synthesis planning tasks in chemical AI, offering a versatile tool for accurate reaction prediction and synthesis design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
永不停歇奈格里完成签到,获得积分10
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
悍匪小保镖完成签到,获得积分10
2秒前
ppp发布了新的文献求助10
3秒前
3秒前
3秒前
晴哆哆完成签到,获得积分10
3秒前
fyq发布了新的文献求助10
4秒前
共享精神应助星星的梦采纳,获得10
4秒前
嘟嘟请让一让完成签到,获得积分10
5秒前
5秒前
浮游应助cxt12138采纳,获得10
5秒前
Criminology34应助ark861023采纳,获得10
6秒前
6秒前
夏cai完成签到,获得积分10
7秒前
孤独的匕发布了新的文献求助10
7秒前
7秒前
liuxiaomeng发布了新的文献求助10
9秒前
10秒前
10秒前
浮游应助科研通管家采纳,获得10
11秒前
忘舒完成签到,获得积分10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
11秒前
zhonglv7应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
12秒前
12秒前
大模型应助科研通管家采纳,获得10
12秒前
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5709188
求助须知:如何正确求助?哪些是违规求助? 5193261
关于积分的说明 15256131
捐赠科研通 4861993
什么是DOI,文献DOI怎么找? 2609827
邀请新用户注册赠送积分活动 1560233
关于科研通互助平台的介绍 1517986