已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A physics-informed neural network method for modeling one-dimensional water flow without roughness coefficient input

物理 人工神经网络 统计物理学 流量(数学) 表面粗糙度 机械 应用数学 人工智能 热力学 数学 计算机科学
作者
Xu Yang,Lingling Wang,Jianlei Cui,Xu Jin,Mengtian Wu,Jie Liu,Hai Zhu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (7)
标识
DOI:10.1063/5.0266451
摘要

Roughness coefficients significantly influence flow resistance and are critical for accurate one-dimensional (1-D) river flow simulations. However, obtaining reliable roughness data in natural rivers is challenging due to spatial variability and measurement difficulties, leading to substantial uncertainty in hydraulic modeling. To address this, we propose a novel Physics-Informed Neural Network Roughness Estimation (PINN-RE) framework, which augments traditional PINNs by incorporating a dedicated neural network for predicting spatially distributed roughness. By coupling the roughness and the hydrodynamic field via the loss function governed by the Saint-Venant Equations, PINN-RE enables the simultaneous learning of spatially distributed roughness coefficients and hydrodynamics. The framework is evaluated using four scenario groups with varying roughness distributions. Results show that PINN-RE markedly improves hydrodynamic prediction accuracy compared to the conventional PINN, reducing the water depth error from 8.24% to 1.75% in a linear roughness case. Sensitivity analysis reveals a U-shaped error trend with sampling frequency, minimized at 300 points per station and the model is more sensitive to sampling frequency than to station count. Moreover, we analyze the relative importance of different physical quantities in the partial differential equation loss and find that the contribution of roughness is 10–50 times greater than that of water depth or discharge. These findings show the dominant role of roughness in 1-D flow modeling and demonstrate that PINN-RE not only offers a physically consistent and data-efficient solution to roughness identification, but also enhances the understanding of physical parameter interactions in river channels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助flipped采纳,获得10
2秒前
亲爱的安德烈完成签到,获得积分10
4秒前
obsession完成签到 ,获得积分10
4秒前
EVEN完成签到 ,获得积分10
4秒前
伊力扎提发布了新的文献求助10
5秒前
Fx完成签到,获得积分10
12秒前
充电宝应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
13秒前
13秒前
17秒前
欢呼宛秋完成签到 ,获得积分10
20秒前
ybheart发布了新的文献求助10
20秒前
leo发布了新的文献求助10
20秒前
脑洞疼应助gui采纳,获得10
20秒前
LJL完成签到 ,获得积分10
22秒前
肉丸完成签到 ,获得积分10
24秒前
慕青应助waerdenghu采纳,获得10
25秒前
siqilinwillbephd完成签到 ,获得积分10
28秒前
31秒前
彭仲康完成签到 ,获得积分10
32秒前
33秒前
李大刚完成签到 ,获得积分10
34秒前
Suliove发布了新的文献求助10
34秒前
SCINEXUS完成签到,获得积分0
36秒前
36秒前
36秒前
41秒前
追寻夏烟完成签到 ,获得积分10
41秒前
无限的书芹完成签到 ,获得积分10
43秒前
劳健龙完成签到 ,获得积分10
43秒前
小徐医生完成签到,获得积分10
44秒前
冷静的小虾米完成签到 ,获得积分10
46秒前
gui发布了新的文献求助10
47秒前
49秒前
dagangwood完成签到,获得积分10
49秒前
nessa完成签到 ,获得积分10
49秒前
赘婿应助ybheart采纳,获得10
49秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
ICDD求助cif文件 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Secrets of Successful Product Launches 300
The Rise & Fall of Classical Legal Thought 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4341476
求助须知:如何正确求助?哪些是违规求助? 3849563
关于积分的说明 12020127
捐赠科研通 3490869
什么是DOI,文献DOI怎么找? 1915721
邀请新用户注册赠送积分活动 958819
科研通“疑难数据库(出版商)”最低求助积分说明 858900