Optimization of Transport Layers and Physical Properties in Mg3BiCl3 Solar Cells via Cutting‐Edge Numerical Simulations and Machine Learning

作者
Asadul Islam Shimul,Bikram Biswas,Avijit Ghosh,Aboud Ahmed Awadh Bahajjaj,Hala A. Ibrahium
出处
期刊:Energy technology [Wiley]
标识
DOI:10.1002/ente.202501240
摘要

This research examines the optoelectronic properties of Mg 3 BiCl 3 through density function theory (DFT) simulations. The photovoltaic efficacy of solar cells using Mg 3 BiCl 3 as the absorber is evaluated through the SCAPS 1D tool, with WS 2 and C 60 as electron transport layers (ETLs), alongside various hole transport layers (HTLs), including Cu 2 O, CFTS, CuO, Cuss, NiO, and P3HT, and is thoroughly examined. Cu 2 O is identified as the ideal HTL, and its performance is subsequently simulated utilizing the SCAPS 1D tool. Two separate device architectures are assessed: Device‐I (Al/ITO/WS 2 /Mg 3 BiCl 3 /Cu 2 O/Ni) and Device‐II (Al/ITO/C 60 /Mg 3 BiCl 3 /Cu 2 O/Ni). To attain optimal device performance, numerous parameters are optimized, encompassing doping densities, defect density, series and shunt resistances, layer thickness, carrier generation‐recombination, temperature, and quantum efficiency. Among the two configurations, Device‐I demonstrates superior performance, achieving a power conversion efficiency (PCE) of 30.23%, with an open‐circuit voltage (V OC ) of 1.1411 V, a short‐circuit current density (J SC ) of 30.31 mA cm −2 , and a fill factor (FF) of 87.29%. Additionally, optimal PCE is predicted by analyzing multiple semiconductor attributes using a random forest machine learning model. A mean correlation coefficient (R 2 ) of ≈0.8475 is attained by the model, indicating robust predictive accuracy and reliability. The findings underscore significant potential for high‐performance Mg 3 BiCl 3 ‐based solar cells.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ziqingserra完成签到 ,获得积分10
刚刚
Adamfreex发布了新的文献求助10
1秒前
Catherine发布了新的文献求助30
2秒前
研友_VZG7GZ应助luiii采纳,获得10
3秒前
3秒前
孖林发布了新的文献求助10
3秒前
科目三应助zoe11采纳,获得10
4秒前
4秒前
5秒前
彭于晏应助CYT采纳,获得10
5秒前
刘家小姐姐完成签到,获得积分10
5秒前
8秒前
8秒前
阳光刺眼发布了新的文献求助10
8秒前
8秒前
9秒前
sln发布了新的文献求助10
10秒前
10秒前
DamenS发布了新的文献求助10
11秒前
浮游应助懒羊羊大王采纳,获得10
11秒前
Ming发布了新的文献求助10
12秒前
13秒前
刘笨笨发布了新的文献求助10
13秒前
orixero应助wdd采纳,获得10
13秒前
李健的小迷弟应助Song采纳,获得10
13秒前
14秒前
小6s发布了新的文献求助10
14秒前
努力发布了新的文献求助10
15秒前
选波发布了新的文献求助10
16秒前
16秒前
18秒前
与光完成签到,获得积分10
19秒前
CYT发布了新的文献求助10
21秒前
21秒前
调皮杯中猫完成签到,获得积分10
22秒前
CodeCraft应助Miss采纳,获得10
23秒前
23秒前
符聪完成签到 ,获得积分10
23秒前
24秒前
包凡之发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5196755
求助须知:如何正确求助?哪些是违规求助? 4378345
关于积分的说明 13636034
捐赠科研通 4233859
什么是DOI,文献DOI怎么找? 2322459
邀请新用户注册赠送积分活动 1320610
关于科研通互助平台的介绍 1271010