Microstructural damage dependent machine learning model to predict stiffness reduction in damaged GFRP composites

材料科学 复合材料 刚度 还原(数学) 纤维增强塑料 结构工程 环氧树脂 工程类 几何学 数学
作者
Mritunjay Maharudrayya Hiremath,Timo Bernthaler,Pascal Anger,Sushil Mishra,Anirban Guha,Asim Tewari
出处
期刊:Journal of Reinforced Plastics and Composites [SAGE]
标识
DOI:10.1177/07316844251348780
摘要

The underlying cause of stiffness degradation in composites subjected to fatigue is irreversible microstructural damage, which exhibits spatial anisotropy depending on the loading conditions and structural characteristics. Each mode of microdamage represents different physical quantities, making it a challenging task to predict stiffness. In this work, machine learning (ML) models, including multiple linear regression (MLR), support vector regression (SVR) and random forest (RF), were employed to predict stiffness based on stereologically quantified damage data. High resolution Scanning Electron Microscopy imaging of edge-sectional planes was conducted during fatigue tests to quantify damage in interrupted composite materials. Experimental findings identified two distinct types of microstructural damage: (i) perpendicular cracks in woven roving mat (WRM) and chopped strand mat (CSM) under tension-tension (T-T) cyclic loading, and (ii) parallel cracks in CSM under both tension-tension and compression-compression cyclic loading. Incorporating these damage features, ML models demonstrated strong predictability of stiffness values for both CSM (T-T) and WRM (T-T) composites, with the SVR model showing particularly good agreement with experimental results for the CSM (T-T) composite. By leveraging experimental microscopy and stereology data, the ML models successfully established a non-linear relationship between microstructural damage and stiffness, providing a robust framework for understanding degradation mechanisms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Airlie完成签到,获得积分10
刚刚
1秒前
麦芽糖发布了新的文献求助20
1秒前
不想上班了完成签到 ,获得积分10
1秒前
Wanting发布了新的文献求助10
2秒前
liu1900ab完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
yuanqi完成签到,获得积分10
3秒前
4秒前
zhao完成签到,获得积分10
4秒前
finn发布了新的文献求助10
4秒前
4秒前
子车茗应助城九寒采纳,获得30
5秒前
SciGPT应助不吃辣的小刘采纳,获得10
5秒前
6秒前
6秒前
烟花应助留胡子的小甜瓜采纳,获得10
7秒前
caicai完成签到,获得积分10
7秒前
龙腾虎跃完成签到,获得积分10
7秒前
高永康完成签到,获得积分10
8秒前
8秒前
wmx发布了新的文献求助10
9秒前
LuckyLiu发布了新的文献求助10
9秒前
1230完成签到 ,获得积分10
9秒前
星辰大海应助小C采纳,获得10
9秒前
汉堡包应助yzadu采纳,获得10
10秒前
10秒前
思源应助研友_RLNDkZ采纳,获得10
10秒前
MOON完成签到,获得积分10
10秒前
科研通AI2S应助终梦采纳,获得10
11秒前
11秒前
科研小黑发布了新的文献求助10
12秒前
酷波er应助六根清净采纳,获得10
12秒前
13秒前
14秒前
14秒前
懒羊羊发布了新的文献求助10
14秒前
14秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5343316
求助须知:如何正确求助?哪些是违规求助? 4478987
关于积分的说明 13941205
捐赠科研通 4375914
什么是DOI,文献DOI怎么找? 2404365
邀请新用户注册赠送积分活动 1396915
关于科研通互助平台的介绍 1369240