已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

AI-Enhanced Finite Element Method (FEM) for Structural Analysis

有限元法 结构工程 计算机科学 工程类
作者
Suresh Kumar Sahani
标识
DOI:10.52783/jes.8946
摘要

The Finite Element Method (FEM) has been the foundation of computational structural analysis for a very long time; yet, because to its high computing demand, it has limits when used to applications that are data-intensive, real-time, and large-scale. In response, this research presents a hybrid framework that combines traditional finite element method (FEM) with artificial intelligence (AI), more especially supervised deep learning, in order to improve the effectiveness and scalability of mathematical models of structural systems. The AI-Enhanced FEM framework that has been proposed has been trained on verified FEM datasets, and it has demonstrated the ability to accurately approximate displacement and stress fields across a wide range of structural scenarios. These scenarios include beam deflection, plate bending, and stress concentration around geometrical discontinuities. The model is validated by presenting six comprehensive numerical examples, with the predictions made by AI reaching an accuracy that is within 1–3% of the findings obtained by traditional finite element methods (FEM) and giving up to 500 times quicker calculation. Cross-validation using analytical benchmarks, physics-based feature embedding, and domain-informed neural network design are the three methods that are used to ensure that the methodological rigor is maintained. The talk focusses on the practical benefits as well as the theoretical implications that are associated with hybridizing numerical and data-driven models. This approach is positioned as a revolutionary step towards real-time structural analysis, digital twins, and intelligent infrastructure systems. This study highlights the connection between numerical rigor and machine learning, therefore opening the way for engineering simulations that are interpretable, adaptable, and computationally economical.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ZYXie完成签到 ,获得积分10
刚刚
1秒前
月亮完成签到,获得积分10
1秒前
zy完成签到 ,获得积分10
4秒前
科研通AI2S应助Youy采纳,获得10
4秒前
ztayx完成签到 ,获得积分10
5秒前
6秒前
香樟沐雪发布了新的文献求助10
6秒前
9秒前
11秒前
木子完成签到 ,获得积分10
12秒前
14秒前
兆渊发布了新的文献求助10
15秒前
16秒前
传奇3应助研友_ZzRPkZ采纳,获得10
17秒前
三岁完成签到 ,获得积分10
18秒前
18秒前
20秒前
拼搏宛儿发布了新的文献求助10
23秒前
繁星长明应助小陈采纳,获得10
24秒前
ll完成签到 ,获得积分10
24秒前
25秒前
26秒前
27秒前
江江发布了新的文献求助10
29秒前
拼搏宛儿完成签到,获得积分10
30秒前
30秒前
caicai发布了新的文献求助30
31秒前
洞两发布了新的文献求助10
32秒前
Yu发布了新的文献求助10
33秒前
南星完成签到 ,获得积分10
33秒前
科研通AI2S应助霍巧凡采纳,获得10
37秒前
38秒前
任性的外套完成签到 ,获得积分10
39秒前
飞快的雅青完成签到 ,获得积分10
41秒前
江江完成签到,获得积分10
43秒前
45秒前
桃子完成签到 ,获得积分10
46秒前
无止完成签到,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509144
求助须知:如何正确求助?哪些是违规求助? 4604163
关于积分的说明 14489285
捐赠科研通 4538831
什么是DOI,文献DOI怎么找? 2487198
邀请新用户注册赠送积分活动 1469617
关于科研通互助平台的介绍 1441838