B4GALT3 as a Key Glycosyltransferase Gene in Multiple Myeloma Progression: Insights From Bioinformatics, Machine Learning, and Experimental Validation

生物 基因敲除 Wnt信号通路 免疫印迹 比例危险模型 基因 多发性骨髓瘤 癌症研究 生物信息学 内科学 免疫学 遗传学 医学
作者
Apeng Yang,Mengying Ke,Feng Lin,Ye Yang,Junmin Chen,Zhiyong Zeng
出处
期刊:Molecular Carcinogenesis [Wiley]
标识
DOI:10.1002/mc.70013
摘要

ABSTRACT Glycosylation abnormalities are critical in the progression of various cancers. However, their role in the onset and prognosis of multiple myeloma (MM) remains underexplored. This study aims to identify glycosyltransferase (GT)‐related biomarkers and investigate their underlying mechanisms in MM. GT‐related genes were extracted from the MMRF‐CoMMpass and GSE57317 data sets. Potential biomarkers were identified using Cox regression and Lasso analyses. A glycosyltransferase‐related prognostic model (GTPM) was developed by evaluating 113 machine learning algorithm combinations. The expression of B4GALT3, a key gene identified through this model, was analyzed in MM bone marrow samples using immunohistochemistry, quantitative PCR, and Western blot. Functional roles of B4GALT3 in MM cell behavior were assessed through knockdown experiments, and its mechanism of action was investigated. The GTPM stratified MM patients into high‐ and low‐risk groups, with significantly better survival in the low‐risk group (HR = 55.94, 95% CI = 40.48–77.31, p < 0.001). The model achieved AUC values of 0.98 and 0.99 for 1‐ and 3‐year overall survival, outperforming existing gene signatures (including EMC92, UAMS70, and UAMS17). B4GALT3 expression was significantly elevated in advanced MM stages ( p < 0.001) and correlated with poorer survival. Knockdown of B4GALT3 reduced MM cell proliferation, invasion, and increased apoptosis. Mechanistic analyses revealed that B4GALT3 modulates MM cell behavior via the Wnt/β‐catenin/GRP78 pathway, primarily by regulating endoplasmic reticulum (ER) stress. This study developed a novel GTPM for predicting survival in MM and identified B4GALT3 as a key gene influencing disease progression. Experimental evidence highlights B4GALT3's role in modulating ER stress and Wnt/β‐catenin pathways, positioning it as a potential prognostic biomarker and therapeutic target in MM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xliiii完成签到,获得积分10
6秒前
崔康佳完成签到,获得积分10
6秒前
实力与幸运并存完成签到,获得积分10
8秒前
cq_2完成签到,获得积分10
8秒前
空儒完成签到 ,获得积分10
9秒前
自觉灵波完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
Jiaocm完成签到,获得积分10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
殷勤的紫槐应助科研通管家采纳,获得200
16秒前
酷波er应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
ccmxigua应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
17秒前
仕子佳人完成签到,获得积分10
26秒前
lucky完成签到 ,获得积分10
28秒前
量子星尘发布了新的文献求助10
29秒前
忒寒碜完成签到,获得积分10
31秒前
w0r1d完成签到 ,获得积分10
33秒前
冯小路完成签到 ,获得积分10
34秒前
眼睛大的薯片完成签到 ,获得积分10
37秒前
小小咸鱼完成签到 ,获得积分10
39秒前
大师兄完成签到,获得积分10
42秒前
心灵美萝卜完成签到,获得积分10
42秒前
上善若水呦完成签到 ,获得积分10
43秒前
lin完成签到 ,获得积分10
46秒前
煌大河完成签到 ,获得积分10
48秒前
48秒前
量子星尘发布了新的文献求助50
49秒前
50秒前
xdc完成签到,获得积分10
50秒前
lin发布了新的文献求助10
55秒前
等你下课完成签到 ,获得积分10
56秒前
xqh完成签到,获得积分10
56秒前
Docsiwen完成签到 ,获得积分10
1分钟前
yang完成签到 ,获得积分10
1分钟前
等待的幼晴完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5066695
求助须知:如何正确求助?哪些是违规求助? 4288665
关于积分的说明 13360314
捐赠科研通 4108018
什么是DOI,文献DOI怎么找? 2249486
邀请新用户注册赠送积分活动 1254917
关于科研通互助平台的介绍 1187299