亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DWI-based Biologically Interpretable Radiomic Nomogram for Predicting 1-year Biochemical Recurrence after Radical Prostatectomy: A Deep Learning, Multicenter Study

列线图 前列腺切除术 医学 生化复发 多中心研究 前列腺癌 泌尿科 外科 内科学 癌症 随机对照试验
作者
Xiang-Ke Niu,Yongjie Li,Lei Wang,Guohui Xu
出处
期刊:Current Medical Imaging Reviews [Bentham Science]
卷期号:21: e15734056403104-e15734056403104 被引量:2
标识
DOI:10.2174/0115734056403104250527045320
摘要

Introduction: It is not rare to experience a biochemical recurrence (BCR) following radical prostatectomy (RP) for prostate cancer (PCa). It has been reported that early detection and management of BCR following surgery could improve survival in PCa. This study aimed to develop a nomogram integrating deep learning-based radiomic features and clinical parameters to predict 1-year BCR after RP and to examine the associations between radiomic scores and the tumor microenvironment (TME). Methods: In this retrospective multicenter study, two independent cohorts of patients (n = 349) who underwent RP after multiparametric magnetic resonance imaging (mpMRI) between January 2015 and January 2022 were included in the analysis. Single-cell RNA sequencing data from four prospectively enrolled participants were used to investigate the radiomic score-related TME. The 3D U-Net was trained and optimized for prostate cancer segmentation using diffusion-weighted imaging, and radiomic features of the target lesion were extracted. Predictive nomograms were developed via multivariate Cox proportional hazard regression analysis. The nomograms were assessed for discrimination, calibration, and clinical usefulness. Results: In the development cohort, the clinical-radiomic nomogram had an AUC of 0.892 (95% confidence interval: 0.783--0.939), which was considerably greater than those of the radiomic signature and clinical model. The Hosmer–Lemeshow test demonstrated that the clinical-radiomic model performed well in both the development (P = 0.461) and validation (P = 0.722) cohorts. Discussion: Decision curve analysis revealed that the clinical-radiomic nomogram displayed better clinical predictive usefulness than the clinical or radiomic signature alone in both cohorts. Radiomic scores were associated with a significant difference in the TME pattern. Conclusion: Our study demonstrated the feasibility of a DWI-based clinical-radiomic nomogram combined with deep learning for the prediction of 1-year BCR. The findings revealed that the radiomic score was associated with a distinctive tumor microenvironment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动人的惜文完成签到,获得积分10
22秒前
李健应助平淡满天采纳,获得10
33秒前
小白t73完成签到 ,获得积分10
43秒前
43秒前
西柚柠檬完成签到 ,获得积分10
52秒前
研友_VZG7GZ应助科研通管家采纳,获得10
58秒前
科研通AI2S应助科研通管家采纳,获得10
58秒前
1分钟前
平淡满天完成签到,获得积分20
1分钟前
1分钟前
平淡满天发布了新的文献求助10
1分钟前
科研通AI6.1应助转转采纳,获得10
1分钟前
科研通AI2S应助jami-yu采纳,获得10
1分钟前
1分钟前
转转发布了新的文献求助10
1分钟前
公茂源完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
星辰大海应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
星辰大海应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
赘婿应助科研通管家采纳,获得10
2分钟前
Imran完成签到,获得积分10
3分钟前
爱思考的小笨笨完成签到,获得积分10
3分钟前
梅子黄时雨完成签到,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
4分钟前
科研通AI6.1应助993494543采纳,获得10
4分钟前
4分钟前
优美的莹芝完成签到,获得积分10
4分钟前
科研通AI2S应助信陵君无忌采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
5分钟前
古古怪界丶黑大帅完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764374
求助须知:如何正确求助?哪些是违规求助? 5551219
关于积分的说明 15406175
捐赠科研通 4899585
什么是DOI,文献DOI怎么找? 2635809
邀请新用户注册赠送积分活动 1583978
关于科研通互助平台的介绍 1539134