Prompt Framework for Extracting Scale-Related Knowledge Entities from Chinese Medical Literature: Development and Evaluation Study

计算机科学 命名实体识别 背景(考古学) 任务(项目管理) 比例(比率) 鉴定(生物学) 资源(消歧) 情报检索 可靠性(半导体) 自然语言处理 人工智能 实体链接 数据科学 知识库 古生物学 计算机网络 功率(物理) 物理 植物 管理 量子力学 经济 生物
作者
Jie Hao,Zhenli Chen,Qin Peng,Liang Zhao,Wanqing Zhao,Shan Cong,Junlian Li,Jiao Li,Qing Qian,Haixia Sun
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:27: e67033-e67033
标识
DOI:10.2196/67033
摘要

Background Measurement-based care improves patient outcomes by using standardized scales, but its widespread adoption is hindered by the lack of accessible and structured knowledge, particularly in unstructured Chinese medical literature. Extracting scale-related knowledge entities from these texts is challenging due to limited annotated data. While large language models (LLMs) show promise in named entity recognition (NER), specialized prompting strategies are needed to accurately recognize medical scale-related entities, especially in low-resource settings. Objective This study aims to develop and evaluate MedScaleNER, a task-oriented prompt framework designed to optimize LLM performance in recognizing medical scale-related entities from Chinese medical literature. Methods MedScaleNER incorporates demonstration retrieval within in-context learning, chain-of-thought prompting, and self-verification strategies to improve performance. The framework dynamically retrieves optimal examples using a k-nearest neighbors approach and decomposes the NER task into two subtasks: entity type identification and entity labeling. Self-verification ensures the reliability of the final output. A dataset of manually annotated Chinese medical journal papers was constructed, focusing on three key entity types: scale names, measurement concepts, and measurement items. Experiments were conducted by varying the number of examples and the proportion of training data to evaluate performance in low-resource settings. Additionally, MedScaleNER’s performance was compared with locally fine-tuned models. Results The CMedS-NER (Chinese Medical Scale Corpus for Named Entity Recognition) dataset, containing 720 papers with 27,499 manually annotated scale-related knowledge entities, was used for evaluation. Initial experiments identified GLM-4-0520 as the best-performing LLM among six tested models. When applied with GLM-4-0520, MedScaleNER significantly improved NER performance for scale-related entities, achieving a macro F1-score of 59.64% in an exact string match with the full training dataset. The highest performance was achieved with 20-shot demonstrations. Under low-resource scenarios (eg, 1% of the training data), MedScaleNER outperformed all tested locally fine-tuned models. Ablation studies highlighted the importance of demonstration retrieval and self-verification in improving model reliability. Error analysis revealed four main types of mistakes: identification errors, type errors, boundary errors, and missing entities, indicating areas for further improvement. Conclusions MedScaleNER advances the application of LLMs and prompts engineering for specialized NER tasks in Chinese medical literature. By addressing the challenges of unstructured texts and limited annotated data, MedScaleNER’s adaptability to various biomedical contexts supports more efficient and reliable knowledge extraction, contributing to broader measurement-based care implementation and improved clinical and research outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林夕完成签到,获得积分10
刚刚
一叶扁舟完成签到,获得积分10
刚刚
Azlne完成签到 ,获得积分10
刚刚
ivy完成签到 ,获得积分10
刚刚
Mumu发布了新的文献求助30
1秒前
村长热爱美丽完成签到 ,获得积分10
1秒前
机智采枫完成签到 ,获得积分10
2秒前
苗广山完成签到,获得积分10
2秒前
cxjie320完成签到,获得积分10
2秒前
xxxx完成签到,获得积分10
2秒前
斯文败类应助sheng采纳,获得10
2秒前
Bao完成签到 ,获得积分10
3秒前
黎明完成签到,获得积分20
3秒前
acb完成签到,获得积分10
4秒前
久念发布了新的文献求助10
4秒前
4秒前
shuaiBsen完成签到,获得积分10
6秒前
平常莹芝完成签到,获得积分10
6秒前
6秒前
SYLH应助甜叶菊采纳,获得10
6秒前
k123456应助light采纳,获得10
7秒前
HOXXXiii完成签到,获得积分10
7秒前
楚江南完成签到,获得积分10
8秒前
失眠醉易应助黎明采纳,获得20
8秒前
MQQ完成签到 ,获得积分10
8秒前
蓝色钢琴完成签到,获得积分10
8秒前
犹豫曲奇完成签到 ,获得积分10
8秒前
shim完成签到,获得积分10
9秒前
喜之郎完成签到,获得积分10
9秒前
哦哦哦完成签到 ,获得积分10
9秒前
18746005898完成签到 ,获得积分10
10秒前
taster发布了新的文献求助10
10秒前
单纯的海云完成签到 ,获得积分10
10秒前
风云再起完成签到,获得积分10
10秒前
英俊的铭应助zz采纳,获得10
10秒前
没所谓完成签到,获得积分20
11秒前
小龙完成签到,获得积分10
11秒前
凸迩丝儿完成签到,获得积分10
11秒前
Hello应助快乐仙知采纳,获得10
11秒前
粗犷的从凝完成签到 ,获得积分10
11秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816043
求助须知:如何正确求助?哪些是违规求助? 3359559
关于积分的说明 10403403
捐赠科研通 3077404
什么是DOI,文献DOI怎么找? 1690297
邀请新用户注册赠送积分活动 813734
科研通“疑难数据库(出版商)”最低求助积分说明 767781