亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Deep Learning‐Based Multimodal Fusion Model for Recurrence Prediction in Persistent Atrial Fibrillation Patients

医学 心房颤动 导管消融 内科学 心脏病学 回顾性队列研究 深度学习 人工智能 计算机科学
作者
Li Chen,Xujian Feng,Haonan Chen,Biqi Tang,Quan Fang,Taibo Chen,Cuiwei Yang
出处
期刊:Journal of Cardiovascular Electrophysiology [Wiley]
卷期号:36 (8): 1785-1797
标识
DOI:10.1111/jce.16733
摘要

ABSTRACT Background The long‐term success rate of atrial fibrillation (AF) ablation remains a significant clinical challenge, particularly in patients with persistent atrial fibrillation (Persistent AF, PeAF). The recurrence risk in PeAF patients is influenced by various factors, which complicates the prediction of ablation outcomes. While clinical characteristics provide important references for risk assessment, the predictive accuracy of existing methods is limited and they fail to fully leverage the rich information contained in electrocardiogram (ECG) signals. Integrating clinical features with ECG signals holds promise for enhancing recurrence prediction accuracy and supporting personalized management. Methods This study conducted a retrospective analysis of PeAF patients who underwent radiofrequency catheter ablation treatment between 2016 and 2019. A multimodal fusion framework based on a residual block network structure was proposed, integrating preprocedural AF rhythm 12‐lead ECG signals, clinical scores, and baseline characteristics of the patients to construct a deep learning model for predicting the risk of postablation recurrence in PeAF patients. A fivefold cross‐validation method was used to partition the data set for model training and testing. Results The fusion model was evaluated on a cohort of 77 PeAF patients, achieving good predictive performance with an average AUC of 0.74, and a maximum of 0.82. It significantly outperformed traditional clinical scoring systems and single‐modal models based solely on ECG signals. Additionally, the model demonstrated lower variance (0.08), reflecting its robustness and stability with small sample sizes. Conclusion This study innovatively combines AF rhythm ECG signals with clinical characteristics to construct a deep learning model for predicting the recurrence risk in PeAF patients after radiofrequency catheter ablation. The results show that this method effectively improves prediction performance and provides support for personalized clinical decision‐making, with significant potential for clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安静的飞珍完成签到,获得积分10
10秒前
小丸子和zz完成签到 ,获得积分10
48秒前
帅气的安柏完成签到,获得积分10
1分钟前
Jessiehuang完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
hqh发布了新的文献求助10
2分钟前
英姑应助hqh采纳,获得10
2分钟前
2分钟前
2分钟前
NS完成签到,获得积分10
2分钟前
锂电阳离子无序完成签到,获得积分10
2分钟前
2分钟前
嘬痰猩猩完成签到 ,获得积分10
3分钟前
小脸红扑扑完成签到 ,获得积分10
3分钟前
小二郎应助Omni采纳,获得10
4分钟前
4分钟前
世界完成签到,获得积分10
4分钟前
背后晓兰完成签到 ,获得积分10
5分钟前
xingsixs完成签到 ,获得积分10
6分钟前
Cassie发布了新的文献求助10
6分钟前
neversay4ever完成签到 ,获得积分10
7分钟前
科研通AI5应助秋日思语采纳,获得10
7分钟前
8分钟前
Hello应助科研通管家采纳,获得10
8分钟前
浮游应助科研通管家采纳,获得30
8分钟前
wang发布了新的文献求助10
8分钟前
8分钟前
8分钟前
秋日思语发布了新的文献求助10
8分钟前
8分钟前
andrele完成签到,获得积分10
8分钟前
hqh发布了新的文献求助10
8分钟前
枫威完成签到 ,获得积分10
8分钟前
andrele发布了新的文献求助30
8分钟前
9分钟前
9分钟前
Waymaker发布了新的文献求助10
9分钟前
gincle完成签到 ,获得积分10
9分钟前
Waymaker完成签到,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5173891
求助须知:如何正确求助?哪些是违规求助? 4363528
关于积分的说明 13585633
捐赠科研通 4212140
什么是DOI,文献DOI怎么找? 2310229
邀请新用户注册赠送积分活动 1309314
关于科研通互助平台的介绍 1256721