再生(生物学)
材料科学
自愈水凝胶
伤口愈合
级联
返老还童
成纤维细胞
生物医学工程
纳米技术
医学
化学工程
细胞生物学
外科
高分子化学
生物化学
生物
体外
工程类
作者
Xinyi Zhang,Yuan Yang,Jianyu Su,Hua Zhong,Liming Fang
标识
DOI:10.1021/acsami.5c02168
摘要
Multifunctional composite wound dressings hold significant promise for diabetic wound healing. However, the detrimental role of the advanced glycation end-products (AGEs)-reactive oxygen species (ROS) cycle in impeding wound repair remains underexplored. To disrupt this pathological cycle, zeolitic imidazolate framework-8 (ZIF-8) encapsulated cerium dioxide (CeO2) and adsorbed glucose oxidase (GOx) nanozyme particles ((ZIF-8@CeO2)@GOx, zcg) were loaded into a methacrylic anhydride-modified gelatin (GelMA) hydrogel to form a sprayable dressing, zcg/GelMA (zcgG). Physicochemical characterization revealed that GOx catalyzes glucose oxidation, triggering ZIF-8 acid-mediated decomposition to release zinc ions and CeO2 nanoparticles, thereby enabling a cascade of glucose depletion, antioxidant, and antiglycation functions. In vitro antimicrobial and cytotoxicity experiments optimized the zcg concentration in GelMA. Under oxidative and hyperglycemic culture conditions, we validated the zcg mechanism of blocking the AGEs-ROS cycle, restoring fibroblast mitochondrial membrane potential, and subsequently suppressing cellular senescence. In a bacterial-infected diabetic rat skin wound model, the zcgG group demonstrated substantially reduced inflammatory levels, a 68% decrease in AGEs, and a 1.9-fold increase in collagen deposition compared to blank controls. Within 2 weeks, the zcgG group achieved complete wound closure, while the control group retained 28% of the initial wound area. This work provides preliminary evidence for the feasibility of using cascade nanozymes to break the AGEs-ROS cycle and promote wound healing.
科研通智能强力驱动
Strongly Powered by AbleSci AI