Path planning for mobile robots in complex environments based on enhanced sparrow search algorithm and dynamic window approach

窗口(计算) 运动规划 计算机科学 移动机器人 路径(计算) 麻雀 人工智能 机器人 算法 计算机视觉 实时计算 计算机网络 生物 生态学 操作系统
作者
Yixuan Luo,Shusen Lin,Yifan Wang,Kai Liang
出处
期刊:Robotica [Cambridge University Press]
卷期号:: 1-24
标识
DOI:10.1017/s026357472500061x
摘要

Abstract Traditional path planning algorithms often encounter challenges in complex dynamic environments, including local optima, excessive path lengths, and inadequate dynamic obstacle avoidance. Thus, the development of innovative path planning algorithms is essential. This article addresses the challenges of mobile robot path planning in complex environments, where traditional methods often converge to local optima, leading to suboptimal path lengths, and struggle with dynamic obstacle avoidance. To overcome these limitations, we propose an integrated algorithm, the enhanced sparrow search algorithm combined with the dynamic window approach (ESSA-DWA). The algorithm first utilizes ESSA for global path planning, followed by local path planning facilitated by the DWA. Specifically, ESSA incorporates Tent chaotic initialization to enhance population diversity, effectively mitigating the risk of premature convergence to local optima. Moreover, dynamic adjustments to the inertia weight during the search process enable an adaptive balance between exploration and exploitation. The integration of a local search strategy further refines individual updates, thereby improving local search performance. To enhance path smoothness, the Floyd algorithm is employed for path optimization, ensuring a more continuous trajectory. Finally, the combination of ESSA and DWA uses key nodes from the global path generated by ESSA as reference points for the local planning process of DWA. This approach ensures that the local path closely follows the global path while also enabling real-time dynamic obstacle detection and avoidance. The effectiveness of the algorithm has been validated through both simulations and practical experiments, offering an efficient and viable solution to the path planning problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助丰都麻辣鸡采纳,获得10
刚刚
Zzz完成签到 ,获得积分10
1秒前
史风华完成签到,获得积分10
1秒前
BinSir完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
封迎松完成签到 ,获得积分10
3秒前
小新AA完成签到,获得积分10
3秒前
23paper发布了新的文献求助10
3秒前
勤奋的丸子完成签到,获得积分10
4秒前
4秒前
5秒前
风趣的洙发布了新的文献求助10
6秒前
kirito7完成签到,获得积分10
6秒前
现代世德完成签到,获得积分10
7秒前
7秒前
彭于晏应助慧1111111采纳,获得10
8秒前
一群牛发布了新的文献求助10
8秒前
科研通AI5应助tcf采纳,获得10
8秒前
科研通AI6应助tcf采纳,获得10
8秒前
科研通AI6应助tcf采纳,获得10
8秒前
科研通AI6应助tcf采纳,获得10
8秒前
8秒前
9秒前
不周山修猫完成签到,获得积分10
9秒前
guo发布了新的文献求助10
10秒前
胡八一发布了新的文献求助10
10秒前
Daniel完成签到,获得积分10
10秒前
11秒前
11秒前
科研通AI5应助vikoel采纳,获得30
12秒前
12秒前
pass完成签到 ,获得积分10
12秒前
顺心山雁完成签到,获得积分10
13秒前
Jasper应助芷兰丁香采纳,获得10
13秒前
bkagyin应助Mzb采纳,获得10
14秒前
汉堡包应助友好初夏采纳,获得10
14秒前
14秒前
YuenYuen发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4478257
求助须知:如何正确求助?哪些是违规求助? 3935712
关于积分的说明 12210411
捐赠科研通 3590501
什么是DOI,文献DOI怎么找? 1974318
邀请新用户注册赠送积分活动 1011621
科研通“疑难数据库(出版商)”最低求助积分说明 905122