FBRT-YOLO: Faster and Better for Real-Time Aerial Image Detection

计算机视觉 航空影像 人工智能 计算机科学 图像(数学) 计算机图形学(图像)
作者
Yao Xiao,Tingfa Xu,Xin Yu,Jianan Li
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:39 (8): 8673-8681 被引量:3
标识
DOI:10.1609/aaai.v39i8.32937
摘要

Embedded flight devices with visual capabilities have become essential for a wide range of applications. In aerial image detection, while many existing methods have partially addressed the issue of small target detection, challenges remain in optimizing small target detection and balancing detection accuracy with efficiency. These issues are key obstacles to the advancement of real-time aerial image detection. In this paper, we propose a new family of real-time detectors for aerial image detection, named FBRT-YOLO, to address the imbalance between detection accuracy and efficiency. Our method comprises two lightweight modules: Feature Complementary Mapping Module (FCM) and Multi-Kernel Perception Unit (MKP), designed to enhance object perception for small targets in aerial images. FCM focuses on alleviating the problem of information imbalance caused by the loss of small target information in deep networks. It aims to integrate spatial positional information of targets more deeply into the network, better aligning with semantic information in the deeper layers to improve the localization of small targets. We introduce MKP, which leverages convolutions with kernels of different sizes to enhance the relationships between targets of various scales and improve the perception of targets at different scales. Extensive experimental results on three major aerial image datasets, including Visdrone, UAVDT, and AI-TOD, demonstrate that FBRT-YOLO outperforms various real-time detectors in terms of performance and speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
汉堡包应助迅速的晟睿采纳,获得10
2秒前
WMQ发布了新的文献求助10
3秒前
Leucalypt发布了新的文献求助30
3秒前
量子星尘发布了新的文献求助10
3秒前
LYN发布了新的文献求助50
3秒前
4秒前
4秒前
5秒前
zxm发布了新的文献求助10
7秒前
彭于晏应助无聊的爆米花采纳,获得10
7秒前
8秒前
YAO发布了新的文献求助10
8秒前
情怀应助忧伤的宝马采纳,获得10
8秒前
mm发布了新的文献求助10
9秒前
Cheng发布了新的文献求助30
10秒前
简装尔芙关注了科研通微信公众号
11秒前
公子浅言完成签到 ,获得积分10
11秒前
11秒前
风清扬应助wenhui采纳,获得10
12秒前
12秒前
Eric完成签到 ,获得积分10
13秒前
上官若男应助doukeze采纳,获得10
13秒前
HHHJJJKKK完成签到,获得积分10
13秒前
kavins凯旋发布了新的文献求助10
15秒前
痴情的茈发布了新的文献求助10
16秒前
活力猕猴桃给活力猕猴桃的求助进行了留言
16秒前
cowboy完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
小M发布了新的文献求助50
19秒前
CR7应助秋千采纳,获得20
19秒前
痴情的茈完成签到,获得积分10
20秒前
cowboy发布了新的文献求助20
21秒前
yy发布了新的文献求助10
22秒前
22秒前
不想干活应助负责的方盒采纳,获得10
25秒前
26秒前
CR7应助咯咯咯采纳,获得20
26秒前
朱先生完成签到 ,获得积分10
26秒前
27秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4212045
求助须知:如何正确求助?哪些是违规求助? 3746166
关于积分的说明 11787691
捐赠科研通 3414112
什么是DOI,文献DOI怎么找? 1873454
邀请新用户注册赠送积分活动 927878
科研通“疑难数据库(出版商)”最低求助积分说明 837317