ScoreNet: Consistency-driven Framework with Multi-side Information Fusion for Session-based Recommendation

会话(web分析) 一致性(知识库) 计算机科学 融合 信息融合 情报检索 人工智能 万维网 语言学 哲学
作者
Piao Tong,Qiao Liu,Zhipeng Zhang,Yuke Wang,Lü Tian
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:39 (12): 12667-12675
标识
DOI:10.1609/aaai.v39i12.33381
摘要

Fusing side information in session-based recommendation is crucial for improving the performance of next-item prediction by providing additional context. Recent methods optimize attention weights by combining item and side information embeddings. However, semantic heterogeneity between item IDs and side information introduces computational noise in attention calculation, leading to inconsistencies in user interest modeling and reducing the accuracy of candidate item scores. These methods also often fail to leverage session-based re-interaction patterns, limiting improvements in score prediction during the decoding phase. To address these challenges, we propose ScoreNet, a consistency-driven framework with multi-side information fusion for session-based recommendation. ScoreNet explicitly models users' persistent preferences, generating consistent decoding scores for candidate items within a unified framework. It incorporates a multi-path re-engagement network to capture re-interaction behavior patterns in a semantic-agnostic manner, enhancing side information fusion while avoiding semantic interference. Additionally, a position-enhanced consistent scoring network redistributes attention scores within sessions, improving prediction accuracy, especially for items with limited interactions. Extensive experiments on three real-world datasets demonstrate that ScoreNet outperforms state-of-the-art models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一只完成签到,获得积分10
1秒前
2秒前
3秒前
Volume发布了新的文献求助10
3秒前
5秒前
fan发布了新的文献求助10
5秒前
科研通AI2S应助田园采纳,获得10
6秒前
6秒前
6秒前
模糊中正应助lJH采纳,获得30
8秒前
yolo完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
10秒前
wenyh发布了新的文献求助10
11秒前
科研通AI5应助妮妮采纳,获得10
11秒前
11秒前
西柚柠檬发布了新的文献求助10
12秒前
12秒前
14秒前
15秒前
hhh完成签到 ,获得积分20
16秒前
lxb关闭了lxb文献求助
16秒前
iron发布了新的文献求助10
17秒前
Elena发布了新的文献求助10
17秒前
文盲完成签到,获得积分10
17秒前
17秒前
大力的寻琴完成签到,获得积分10
20秒前
24秒前
24秒前
25秒前
27秒前
科研通AI5应助Hodlumm采纳,获得10
27秒前
Uni应助未何采纳,获得10
28秒前
平常的问雁完成签到 ,获得积分10
29秒前
iron发布了新的文献求助10
30秒前
xue发布了新的文献求助30
30秒前
最棒的宝宝完成签到,获得积分10
32秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Limes XXIII Sonderband 4 / II Proceedings of the 23rd International Congress of Roman Frontier Studies Ingolstadt 2015 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829329
求助须知:如何正确求助?哪些是违规求助? 3372001
关于积分的说明 10470217
捐赠科研通 3091581
什么是DOI,文献DOI怎么找? 1701232
邀请新用户注册赠送积分活动 818315
科研通“疑难数据库(出版商)”最低求助积分说明 770830