Inverse Design of Block Polymer Materials with Desired Nanoscale Structure and Macroscale Properties

纳米尺度 反向 材料科学 块(置换群论) 聚合物 纳米技术 数学 复合材料 几何学
作者
Vinson Liao,Arthi Jayaraman
出处
期刊:JACS Au [American Chemical Society]
卷期号:5 (6): 2810-2824
标识
DOI:10.1021/jacsau.5c00377
摘要

The rational design of novel polymers with tailored material properties has been a long-standing challenge in the field due to the large number of possible polymer design variables. To accelerate this design process, there is a critical need to develop novel tools to aid in the inverse design process and to efficiently explore the high-dimensional polymer design space. Optimizing macroscale material properties for polymeric systems is even more challenging than inorganics and small molecules as these properties are dictated by features on a multitude of length scales, ranging from the chosen monomer chemistries to the chain level design to larger-scale (nm to microns) domain structures. In this work, we present an efficient high-throughput in-silico based framework to effectively design high-performance polymers (blends, copolymers) with desired multiscale nanostructure and macroscale properties which we call RAPSIDY 2.0 - Rapid Analysis of Polymer Structure and Inverse Design strategY 2.0. This new version of RAPSIDY builds upon our previous work, RAPSIDY 1.0, which focused purely on identifying polymer designs that stabilized a desired nanoscale morphology. In RAPSIDY 2.0 we use a combination of molecular dynamics (MD) simulations and Bayesian optimization driven active learning to optimally query high-dimensional polymer design spaces and propose promising design candidates that simultaneously stabilize a selected nanoscale morphology and exhibit desired macroscale material properties (e.g., tensile strength, thermal conductivity). We utilize MD simulations with polymer chains preplaced into selected nanoscale morphologies and perform virtual experiments to determine the stability of the chosen polymer design within the target morphology and calculate the desired macroscale material properties. Our methodology directly addresses the unique challenge associated with copolymers whose macroscale properties are a function of both their chain design and mesoscale morphology, which are coupled. We showcase the efficacy of our methodology in engineering high-performance blends of block copolymers that exhibit (1) high thermal conductivity and (2) high tensile strength. We also discuss the impact of our work in accelerating the design of novel polymeric materials for targeted applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
饶天源发布了新的文献求助10
3秒前
3秒前
青枣不甜发布了新的文献求助100
4秒前
CodeCraft应助lll采纳,获得10
4秒前
积极的夜蕾完成签到,获得积分10
4秒前
于玕发布了新的文献求助10
5秒前
6秒前
会飞的蜗牛完成签到,获得积分10
6秒前
lisitian发布了新的文献求助10
7秒前
非而者厚应助LiOK采纳,获得10
7秒前
8秒前
皮皮发布了新的文献求助10
8秒前
9秒前
9秒前
浮浮世世应助hanjb采纳,获得20
10秒前
哈哈哈发布了新的文献求助10
11秒前
11秒前
追寻麦片完成签到 ,获得积分10
11秒前
12秒前
炎炎夏无声完成签到 ,获得积分10
13秒前
爱笑笑槐关注了科研通微信公众号
13秒前
13秒前
刘香发布了新的文献求助10
13秒前
yao chen发布了新的文献求助10
13秒前
nickthename发布了新的文献求助10
13秒前
13秒前
16秒前
朝阳区李知恩给我服有点黑的求助进行了留言
16秒前
16秒前
炙热晓露发布了新的文献求助10
16秒前
武鹏佳发布了新的文献求助10
17秒前
英姑应助直率黑夜采纳,获得10
17秒前
秋糜发布了新的文献求助10
18秒前
lll发布了新的文献求助10
18秒前
发嗲的小猫咪完成签到,获得积分10
19秒前
19秒前
陈同学完成签到 ,获得积分10
20秒前
研友_VZG7GZ应助鱼维尼采纳,获得10
20秒前
科研通AI6应助哈哈哈采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《机器学习——数据表示学习及应用》 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Fiction e non fiction: storia, teorie e forme 500
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5322258
求助须知:如何正确求助?哪些是违规求助? 4463832
关于积分的说明 13891309
捐赠科研通 4355138
什么是DOI,文献DOI怎么找? 2392174
邀请新用户注册赠送积分活动 1385813
关于科研通互助平台的介绍 1355506