亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multiple, Single Trait GWAS and Supervised Machine Learning Reveal the Genetic Architecture of Fraxinus excelsior Tolerance to Ash Dieback in Europe

白蜡树 生物 遗传建筑学 单核苷酸多态性 全基因组关联研究 遗传变异 物候学 数量性状位点 关联映射 非同义代换 基因型 遗传学 园艺 植物 基因 基因组
作者
James Doonan,Katharina B. Budde,Chatchai Kosawang,Albin Lobo,Rita Verbylaitė,Jaelle C. Brealey,Michael D. Martin,Alfas Pliūra,Kristina Thomas,Heino Konrad,S. Seegmüller,Mateusz Liziniewicz,Michelle Cleary,Miguel Nemesio‐Gorriz,Barbara Fussi,Thomas Kirisits,M. Thomas P. Gilbert,Myriam Heuertz,Erik Dahl Kjær,Lene Rostgaard Nielsen
出处
期刊:Plant Cell and Environment [Wiley]
卷期号:48 (5): 3793-3809 被引量:4
标识
DOI:10.1111/pce.15361
摘要

Common ash (Fraxinus excelsior) is under intensive attack from the invasive alien pathogenic fungus Hymenoscyphus fraxineus, causing ash dieback at epidemic levels throughout Europe. Previous studies have found significant genetic variation among genotypes in ash dieback susceptibility and that host phenology, such as autumn yellowing, is correlated with susceptibility of ash trees to H. fraxineus; however, the genomic basis of ash dieback tolerance in F. excelsior requires further investigation. Here, we integrate quantitative genetics based on multiple replicates and genome-wide association analyses with machine learning to reveal the genetic architecture of ash dieback tolerance and of phenological traits in F. excelsior populations in six European countries (Austria, Denmark, Germany, Ireland, Lithuania, Sweden). Based on phenotypic data of 486 F. excelsior replicated genotypes we observed negative genotypic correlations between crown damage caused by ash dieback and intensity of autumn leaf yellowing within multiple sampling sites. Our results suggest that the examined traits are polygenic and using genomic prediction models, with ranked single nucleotide polymorphisms (SNPs) based on GWAS associations as input, a large proportion of the variation was predicted by unlinked SNPs. Based on 100 unlinked SNPs, we can predict 55% of the variation in disease tolerance among genotypes (as phenotyped in genetic trials), increasing to a maximum of 63% when predicted from 9155 SNPs. In autumn leaf yellowing, 52% of variation is predicted by 100 unlinked SNPs, reaching a peak of 72% using 3740 SNPs. Based on feature permutations within genomic prediction models, a total of eight nonsynonymous SNPs linked to ash dieback crown damage and autumn leaf yellowing (three and five SNPs, respectively) were identified, these were located within genes related to plant defence (pattern triggered immunity, pathogen detection) and phenology (regulation of flowering and seed maturation, auxin transport). We did not find an overlap between genes associated with crown damage level and autumn leaf yellowing. Hence, our results shed light on the difference in the genomic basis of ADB tolerance and autumn leaf yellowing despite these two traits being correlated in quantitative genetic analysis. Overall, our methods show the applicability of genomic prediction models when combined with GWAS to reveal the genomic architecture of polygenic disease tolerance enabling the identification of ash dieback tolerant trees for breeding or conservation purposes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
GYQ发布了新的文献求助30
2秒前
4秒前
4秒前
情怀应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得30
5秒前
嘿嘿应助科研通管家采纳,获得10
5秒前
哈基米德应助科研通管家采纳,获得50
5秒前
5秒前
bingbing完成签到,获得积分10
9秒前
qingchenwuhou完成签到 ,获得积分10
12秒前
13秒前
32秒前
33秒前
Oxygen发布了新的文献求助10
38秒前
41秒前
承淮完成签到,获得积分10
42秒前
承淮发布了新的文献求助10
45秒前
所所应助依古比古采纳,获得10
1分钟前
Oxygen发布了新的文献求助10
1分钟前
在水一方应助xdlongchem采纳,获得10
1分钟前
1分钟前
1分钟前
依古比古发布了新的文献求助10
1分钟前
mangle完成签到,获得积分10
1分钟前
1分钟前
1分钟前
xdlongchem发布了新的文献求助10
1分钟前
丁静完成签到 ,获得积分10
1分钟前
CipherSage应助Bin_Liu采纳,获得10
1分钟前
1分钟前
1分钟前
喵喵发布了新的文献求助10
1分钟前
xdlongchem完成签到,获得积分10
1分钟前
1分钟前
Lyuhng+1完成签到 ,获得积分10
1分钟前
喵喵完成签到,获得积分10
1分钟前
焦糖泡芙塔完成签到,获得积分10
2分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4130279
求助须知:如何正确求助?哪些是违规求助? 3667208
关于积分的说明 11600692
捐赠科研通 3365505
什么是DOI,文献DOI怎么找? 1849080
邀请新用户注册赠送积分活动 912871
科研通“疑难数据库(出版商)”最低求助积分说明 828322