Improving Recall in Sparse Associative Memories That Use Neurogenesis

计算机科学 内容寻址存储器 赫比理论 召回 人工神经网络 稳健性(进化) 人工智能 神经形态工程学 机器学习 心理学 生物化学 基因 认知心理学 化学
作者
Katy Warr,Jonathon Hare,David Thomas
出处
期刊:Neural Computation [The MIT Press]
卷期号:37 (3): 437-480
标识
DOI:10.1162/neco_a_01732
摘要

Abstract The creation of future low-power neuromorphic solutions requires specialist spiking neural network (SNN) algorithms that are optimized for neuromorphic settings. One such algorithmic challenge is the ability to recall learned patterns from their noisy variants. Solutions to this problem may be required to memorize vast numbers of patterns based on limited training data and subsequently recall the patterns in the presence of noise. To solve this problem, previous work has explored sparse associative memory (SAM)—associative memory neural models that exploit the principle of sparse neural coding observed in the brain. Research into a subcategory of SAM has been inspired by the biological process of adult neurogenesis, whereby new neurons are generated to facilitate adaptive and effective lifelong learning. Although these neurogenesis models have been demonstrated in previous research, they have limitations in terms of recall memory capacity and robustness to noise. In this article, we provide a unifying framework for characterizing a type of SAM network that has been pretrained using a learning strategy that incorporated a simple neurogenesis model. Using this characterization, we formally define network topology and threshold optimization methods to empirically demonstrate greater than 104 times improvement in memory capacity compared to previous work. We show that these optimizations can facilitate the development of networks that have reduced interneuron connectivity while maintaining high recall efficacy. This paves the way for ongoing research into fast, effective, low-power realizations of associative memory on neuromorphic platforms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sooo完成签到,获得积分10
刚刚
Orange应助SHI采纳,获得10
刚刚
hj发布了新的文献求助10
1秒前
852应助司空晋鹏采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
1秒前
共享精神应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得30
2秒前
鲜艳的访风完成签到,获得积分10
2秒前
852应助科研通管家采纳,获得10
2秒前
langzhiquan应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
那时花开应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
lalala应助科研通管家采纳,获得20
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
Tourist应助科研通管家采纳,获得10
2秒前
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
Tourist应助科研通管家采纳,获得10
2秒前
尹梦成应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
Tourist应助科研通管家采纳,获得20
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
不倦应助孙伟健采纳,获得50
3秒前
langzhiquan应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
Tourist应助科研通管家采纳,获得10
3秒前
lalala应助科研通管家采纳,获得40
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
Tourist应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
Tourist应助科研通管家采纳,获得10
3秒前
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295400
求助须知:如何正确求助?哪些是违规求助? 4444944
关于积分的说明 13834942
捐赠科研通 4329343
什么是DOI,文献DOI怎么找? 2376614
邀请新用户注册赠送积分活动 1371888
关于科研通互助平台的介绍 1337169