Multiple Instance Learning-Based Prediction of Blood-brain Barrier Opening Outcomes Induced by Focused Ultrasound

血脑屏障 超声波 聚焦超声 超声成像 计算机科学 机器学习 人工智能 生物医学工程 医学 中枢神经系统 内科学 放射科
作者
Haixin Dai,Wenjing Li,Qian Wang,Bingbing Cheng
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-8
标识
DOI:10.1109/tbme.2024.3509533
摘要

Targeted blood-brain barrier (BBB) opening using focused ultrasound (FUS) and micro/nanobubbles is a promising method for brain drug delivery. This study aims to explore the feasibility of multiple instance learning (MIL) in accurate and fast prediction of FUS BBB opening outcomes. FUS BBB opening experiments are conducted on 52 mice with the infusion of SonoVue microbubbles or custom-made nanobubbles. Acoustic signals collected during the experiments are transformed into frequency domain and used as the dataset. We propose a Simple Transformer-based model for BBB Opening Prediction (SimTBOP). By leveraging the self-attention mechanism, our model considers the contextual relationships between signals from different pulses in a treatment and aggregates this information to predict the BBB opening outcomes. Multiple preprocessing methods are applied to evaluate the performance of the proposed model under various conditions. Additionally, a visualization technique is employed to explain and interpret the model. The proposed model achieves excellent prediction performance with an accuracy of 96.7%. Excluding absolute intensity information and retaining baseline noise did not affect the model's performance or interpretability. The proposed model trained on SonoVue data generalizes well to nanobubble data and vice versa. Visualization results indicates that the proposed model focuses on pulses with significant signals near the ultra-harmonic frequency. We demonstrate the feasibility of MIL in FUS BBB opening prediction. The proposed Transformer-based model exhibits outstanding performance, interpretability, and cross-agent generalization capability, providing a novel approach for FUS BBB opening prediction with clinical translation potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zhuzhu007完成签到,获得积分10
1秒前
大力洋葱完成签到,获得积分10
3秒前
4秒前
小白兔完成签到 ,获得积分10
4秒前
积极以云发布了新的文献求助10
6秒前
梦巷完成签到 ,获得积分10
7秒前
刻苦问凝完成签到,获得积分10
7秒前
顺心的定帮完成签到 ,获得积分10
9秒前
项之桃完成签到,获得积分10
9秒前
大熊完成签到 ,获得积分10
9秒前
小鱼鱼Fish完成签到,获得积分10
10秒前
10秒前
呜呼完成签到,获得积分10
10秒前
11秒前
13秒前
14秒前
xiaosun完成签到,获得积分10
16秒前
听风完成签到,获得积分10
16秒前
16秒前
17秒前
积极以云完成签到,获得积分10
17秒前
changfox完成签到,获得积分10
17秒前
CipherSage应助cjh采纳,获得10
19秒前
xiaosun发布了新的文献求助10
20秒前
甜蜜发带完成签到 ,获得积分10
21秒前
勤恳的不二完成签到,获得积分10
21秒前
大模型应助T拐拐采纳,获得10
21秒前
li发布了新的文献求助30
22秒前
乐观小之完成签到,获得积分0
24秒前
24秒前
香蕉寒梅完成签到,获得积分10
25秒前
彭于晏应助富强民主采纳,获得10
25秒前
轻语完成签到 ,获得积分10
27秒前
研友_8DWkVZ完成签到,获得积分10
27秒前
28秒前
29秒前
30秒前
乐乐应助Luna采纳,获得10
31秒前
34秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801189
求助须知:如何正确求助?哪些是违规求助? 3346865
关于积分的说明 10330761
捐赠科研通 3063197
什么是DOI,文献DOI怎么找? 1681450
邀请新用户注册赠送积分活动 807586
科研通“疑难数据库(出版商)”最低求助积分说明 763729