Ultrafast Lithium‐Ion Transport Engineered by Nanoconfinement Effect

材料科学 超短脉冲 锂(药物) 离子 纳米技术 化学 有机化学 光学 医学 物理 内分泌学 激光器
作者
Yahan Yang,Zefeng Li,Zhilin Yang,Qiannan Zhang,Qian Chen,Yuying Jiao,Zixuan Wang,Xiaokun Zhang,Pengbo Zhai,Zhimei Sun,Yong Xiang,Yongji Gong
出处
期刊:Advanced Materials [Wiley]
卷期号:37 (8): e2416266-e2416266 被引量:10
标识
DOI:10.1002/adma.202416266
摘要

Abstract Amid the burgeoning demand for electrochemical energy storage and neuromorphic computing, fast ion transport behavior has attracted widespread attention at both fundamental and practical levels. Here, based on the nanoconfined channel of graphene oxide laminar membranes (GOLMs), the lithium ionic conductivity typically exceeding 10 2 mS cm −1 is realized, one to three orders of magnitude higher than traditional liquid or solid lithium‐ion electrolyte. Specifically, the nanoconfined lithium hexafluorophosphate (LiPF 6 )‐ethylene carbonate (EC)/ dimethyl carbonate (DMC) electrolyte demonstrates the ionic conductivity of 170 mS cm −1 , outperforming the bulk counterpart by ≈16 fold. At the ultralow temperature of −60 °C, the nanoconfined electrolyte also maintains a practically useful conductivity of 11 mS cm −1 . Furthermore, the in situ experimental and theoretical framework enables to attribute the enhanced ionic conductivity to the layer‐by‐layer cations and anions distribution induced by high surface charge and nanoconfinement effects in GO nanochannels. More importantly, integrating such rapid lithium‐ion transport nanochannel into the LiFePO 4 (LFP) cathode significantly improves the high‐rate and long‐cycle performance of lithium batteries. These results exhibit the convention‐breaking ionic conductivity of nanoconfined electrolytes, inspiring the development of ultrafast ion diffusion pathways based on 2D nanoconfined channels for efficient energy storage applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刻苦楷瑞发布了新的文献求助10
刚刚
刚刚
欣喜雁荷完成签到,获得积分10
刚刚
1秒前
丘比特应助钙钛矿电池采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
EMC应助科研通管家采纳,获得10
2秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
小J应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得30
3秒前
wanci应助科研通管家采纳,获得10
3秒前
Hello应助ayu采纳,获得10
3秒前
EMC应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
3秒前
淡定猎豹发布了新的文献求助10
3秒前
小智0921完成签到,获得积分10
3秒前
QYR完成签到,获得积分10
4秒前
ZMY发布了新的文献求助10
5秒前
熹微完成签到,获得积分10
5秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5703539
求助须知:如何正确求助?哪些是违规求助? 5153123
关于积分的说明 15240014
捐赠科研通 4857934
什么是DOI,文献DOI怎么找? 2606820
邀请新用户注册赠送积分活动 1557944
关于科研通互助平台的介绍 1515784