Gradient-Leaks: Enabling Black-Box Membership Inference Attacks Against Machine Learning Models

计算机科学 推论 黑匣子 构造(python库) 人工智能 自编码 机器学习 先验与后验 钥匙(锁) 数据挖掘 数据建模 深度学习 计算机安全 数据库 认识论 程序设计语言 哲学
作者
Gaoyang Liu,Tianlong Xu,Rui Zhang,Zixiong Wang,Chen Wang,Ling Liu
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 427-440 被引量:5
标识
DOI:10.1109/tifs.2023.3324772
摘要

Machine Learning (ML) techniques have been applied to many real-world applications to perform a wide range of tasks. In practice, ML models are typically deployed as the black-box APIs to protect the model owner's benefits and/or defend against various privacy attacks. In this paper, we present Gradient-Leaks as the first evidence showcasing the possibility of performing membership inference attacks (MIAs), with mere black-box access, which aim to determine whether a data record was utilized to train a given target ML model or not. The key idea of Gradient-Leaks is to construct a local ML model around the given record which locally approximates the target model's prediction behavior. By extracting the membership information of the given record from the gradient of the substituted local model using an intentionally modified autoencoder, Gradient-Leaks can thus breach the membership privacy of the target model's training data in an unsupervised manner, without any priori knowledge about the target model's internals or its training data. Extensive experiments on different types of ML models with real-world datasets have shown that Gradient-Leaks can achieve a better performance compared with state-of-the-art attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
qikkk完成签到,获得积分10
1秒前
breeze发布了新的文献求助10
1秒前
赘婿应助追寻的南风采纳,获得10
1秒前
英姑应助彩云追月采纳,获得10
2秒前
苗自中发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
6秒前
小旭不会飞完成签到,获得积分10
6秒前
victor发布了新的文献求助10
6秒前
11秒前
11秒前
11秒前
土豆酱发布了新的文献求助10
11秒前
2thered发布了新的文献求助10
12秒前
松山少林学武功完成签到 ,获得积分10
12秒前
科研通AI5应助sai采纳,获得10
13秒前
yshog完成签到,获得积分10
13秒前
追寻的南风完成签到,获得积分10
15秒前
15秒前
快飞飞完成签到 ,获得积分10
15秒前
情怀应助Luoller采纳,获得10
15秒前
晏温发布了新的文献求助30
15秒前
16秒前
pluto应助友好灵萱采纳,获得50
17秒前
所所应助yshog采纳,获得10
18秒前
李健的小迷弟应助Fang采纳,获得10
18秒前
tinneywu发布了新的文献求助10
19秒前
Ning_发布了新的文献求助10
19秒前
科研通AI5应助hammer采纳,获得10
20秒前
yyy完成签到 ,获得积分10
20秒前
22秒前
羊青丝发布了新的文献求助30
23秒前
张啦啦完成签到 ,获得积分10
23秒前
方方完成签到,获得积分10
23秒前
23秒前
24秒前
24秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798970
求助须知:如何正确求助?哪些是违规求助? 3344671
关于积分的说明 10321176
捐赠科研通 3061162
什么是DOI,文献DOI怎么找? 1680049
邀请新用户注册赠送积分活动 806877
科研通“疑难数据库(出版商)”最低求助积分说明 763429