清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Traditional Machine Learning Methods versus Deep Learning for Meningioma Classification, Grading, Outcome Prediction, and Segmentation: A Systematic Review and Meta-Analysis

医学 分级(工程) 接收机工作特性 荟萃分析 置信区间 人工智能 分割 脑膜瘤 机器学习 内科学 放射科 计算机科学 工程类 土木工程
作者
Krish Maniar,Philipp Lassarén,Aakanksha Rana,Yuxin Yao,Ishaan Ashwini Tewarie,Jakob V. E. Gerstl,Camila M. Recio Blanco,Liam Power,Marco Mammi,Heather Mattie,Timothy R. Smith,Rania A. Mekary
出处
期刊:World Neurosurgery [Elsevier BV]
卷期号:179: e119-e134
标识
DOI:10.1016/j.wneu.2023.08.023
摘要

Meningiomas are common intracranial tumors. Machine learning (ML) algorithms are emerging to improve accuracy in 4 primary domains: classification, grading, outcome prediction, and segmentation. Such algorithms include both traditional approaches that rely on hand-crafted features and deep learning (DL) techniques that utilize automatic feature extraction. The aim of this study was to evaluate the performance of published traditional ML versus DL algorithms in classification, grading, outcome prediction, and segmentation of meningiomas. A systematic review and meta-analysis were conducted. Major databases were searched through September 2021 for publications evaluating traditional ML versus DL models on meningioma management. Performance measures including pooled sensitivity, specificity, F1-score, area under the receiver-operating characteristic curve, positive and negative likelihood ratios (LR+, LR−) along with their respective 95% confidence intervals (95% CIs) were derived using random-effects models. Five hundred thirty-four records were screened, and 43 articles were included, regarding classification (3 articles), grading (29), outcome prediction (7), and segmentation (6) of meningiomas. Of the 29 studies that reported on grading, 10 could be meta-analyzed with 2 DL models (sensitivity 0.89, 95% CI: 0.74–0.96; specificity 0.91, 95% CI: 0.45–0.99; LR+ 10.1, 95% CI: 1.33–137; LR− 0.12, 95% CI: 0.04–0.59) and 8 traditional ML (sensitivity 0.74, 95% CI: 0.62–0.83; specificity 0.93, 95% CI: 0.79–0.98; LR+ 10.5, 95% CI: 2.91–39.5; and LR− 0.28, 95% CI: 0.17–0.49). The insufficient performance metrics reported precluded further statistical analysis of other performance metrics. ML on meningiomas is mostly carried out with traditional methods. For meningioma grading, traditional ML methods generally had a higher LR+, while DL models a lower LR−.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无奈以南完成签到 ,获得积分10
10秒前
科研通AI2S应助mc采纳,获得10
20秒前
Panda完成签到,获得积分10
39秒前
芝麻汤圆完成签到,获得积分10
47秒前
ranj完成签到,获得积分10
1分钟前
2分钟前
娟娟加油完成签到 ,获得积分10
2分钟前
LonelyCMA完成签到 ,获得积分0
2分钟前
酷波er应助科研通管家采纳,获得10
3分钟前
PhishCellar完成签到 ,获得积分10
3分钟前
李爱国应助小兔子采纳,获得10
3分钟前
孙老师完成签到 ,获得积分10
3分钟前
3分钟前
震动的听枫完成签到,获得积分10
3分钟前
小兔子发布了新的文献求助10
3分钟前
huanghe完成签到,获得积分10
5分钟前
沉沉完成签到 ,获得积分0
5分钟前
北国雪未消完成签到 ,获得积分10
6分钟前
小宏完成签到,获得积分10
6分钟前
zmx完成签到 ,获得积分10
7分钟前
欣欣完成签到 ,获得积分10
7分钟前
席江海完成签到,获得积分10
7分钟前
丁丁完成签到,获得积分10
7分钟前
星泪鄢玖笙完成签到 ,获得积分10
8分钟前
风起云涌龙完成签到 ,获得积分10
8分钟前
zhao完成签到 ,获得积分10
8分钟前
Sue完成签到 ,获得积分10
8分钟前
小西完成签到 ,获得积分10
8分钟前
HH1202完成签到 ,获得积分10
8分钟前
研友_nxw2xL完成签到,获得积分10
8分钟前
muriel完成签到,获得积分10
9分钟前
今后应助科研通管家采纳,获得10
9分钟前
通科研完成签到 ,获得积分10
9分钟前
科研通AI5应助budingman采纳,获得10
9分钟前
9分钟前
斯文的难破完成签到 ,获得积分10
9分钟前
一定能考上研究生完成签到,获得积分20
9分钟前
naczx完成签到,获得积分0
10分钟前
10分钟前
budingman发布了新的文献求助10
11分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792541
求助须知:如何正确求助?哪些是违规求助? 3336762
关于积分的说明 10282100
捐赠科研通 3053544
什么是DOI,文献DOI怎么找? 1675652
邀请新用户注册赠送积分活动 803629
科研通“疑难数据库(出版商)”最低求助积分说明 761468