Predicting post-stroke cognitive impairment using machine learning: A prospective cohort study

医学 队列 置信区间 前瞻性队列研究 机器学习 接收机工作特性 物理疗法 内科学 计算机科学
作者
Wencan Ji,Canjun Wang,Hanqing Chen,Yan Liang,Shaohua Wang
出处
期刊:Journal of stroke and cerebrovascular diseases [Elsevier]
卷期号:32 (11): 107354-107354 被引量:19
标识
DOI:10.1016/j.jstrokecerebrovasdis.2023.107354
摘要

Post-stroke cognitive impairment (PSCI) is a serious complication of stroke that warrants prompt detection and management. Consequently, the development of a diagnostic prediction model holds clinical significance.Machine learning algorithms were employed to identify crucial variables and forecast PSCI occurrence within 3-6 months following acute ischemic stroke (AIS).A prospective study was conducted on a developed cohort (331 patients) utilizing data from the Affiliated Zhongda Hospital of Southeast University between January 2022 and August 2022, as well as an external validation cohort (66 patients) from December 2022 to January 2023. The optimal model was determined by integrating nine machine learning classification models, and personalized risk assessment was facilitated by a Shapley Additive exPlanations (SHAP) interpretation.Age, education, baseline National Institutes of Health Scale (NIHSS), Cerebral white matter degeneration (CWMD), Homocysteine (Hcy), and C-reactive protein (CRP) were identified as predictors of PSCI occurrence. Gaussian Naïve Bayes (GNB) model was determined to be the optimal model, surpassing other classifier models in the validation set (area under the curve [AUC]: 0.925, 95 % confidence interval [CI]: 0.861 - 0.988) and achieving the lowest Brier score. The GNB model performed well in the test sets (AUC: 0.919, accuracy: 0.864, sensitivity: 0.818, and specificity: 0.932).The present study involved the development of a GNB model and its elucidation through employment of the SHAP method. These findings provide compelling evidence for preventing PSCI, which could serve as a guide for high-risk patients to undertake appropriate preventive measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
科研通AI2S应助努力发文章采纳,获得10
刚刚
1秒前
1秒前
有且仅有完成签到,获得积分10
2秒前
打打应助轮回1奇点采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
海比天蓝发布了新的文献求助10
3秒前
BeautyZ完成签到,获得积分10
3秒前
3秒前
大模型应助子凯采纳,获得10
4秒前
等风来发布了新的文献求助10
4秒前
5秒前
思思完成签到,获得积分10
5秒前
zhouxu完成签到,获得积分10
5秒前
麦兜将军发布了新的文献求助10
5秒前
CipherSage应助拉长的蓝采纳,获得10
6秒前
7秒前
keyanling完成签到,获得积分20
8秒前
深情安青应助柚子苏采纳,获得10
8秒前
8秒前
LIUC完成签到,获得积分20
9秒前
BeautyZ发布了新的文献求助10
10秒前
10秒前
传奇3应助程霜采纳,获得10
10秒前
1412发布了新的文献求助10
10秒前
刘大力发布了新的文献求助10
10秒前
10秒前
李健的小迷弟应助小米采纳,获得10
10秒前
cruise完成签到,获得积分10
11秒前
酷波er应助伊利丹采纳,获得10
12秒前
碧蓝盼柳发布了新的文献求助10
12秒前
keyanling发布了新的文献求助10
12秒前
13秒前
Liu发布了新的文献求助10
13秒前
13秒前
14秒前
轮回1奇点发布了新的文献求助10
14秒前
15秒前
ceeray23发布了新的文献求助20
15秒前
66发布了新的文献求助30
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492786
求助须知:如何正确求助?哪些是违规求助? 4590743
关于积分的说明 14431959
捐赠科研通 4523251
什么是DOI,文献DOI怎么找? 2478238
邀请新用户注册赠送积分活动 1463283
关于科研通互助平台的介绍 1436014