Human memory optimization algorithm: A memory-inspired optimizer for global optimization problems

计算机科学 数学优化 最优化问题 趋同(经济学) 优化算法 启发式 全局优化 元优化 集合(抽象数据类型) 工程优化 算法 人工智能 数学 经济增长 经济 程序设计语言
作者
Donglin Zhu,Siwei Wang,Changjun Zhou,Shaoqiang Yan,Jiankai Xue
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:237: 121597-121597 被引量:106
标识
DOI:10.1016/j.eswa.2023.121597
摘要

With the progress of science and technology, optimization problems have become complex. Meta-heuristic algorithms have the advantages of high efficiency and strong global search ability in solving optimization problems, so more and more meta-heuristic algorithms are proposed and investigated deeply, and how to improve the universality of an algorithm is an important issue. In this paper, propose an optimization algorithm that simulates human memory behaviour, fully known as human memory optimization Algorithm, abbreviated as HMO, which simulates the way humans behave in production, stores human preferences for success and failure, simulates the way humans behave in their memory, gradually moving towards better directions and outcomes to find a reasonable optimal solution. The results were compared with other meta-heuristic algorithms in the CEC 2013 test set and showed that HMO has better optimization capabilities, and the feasibility of the algorithm was verified from convergence analysis and parametric analysis experiments. In three engineering optimization problems, HMO was able to find optimal solutions within a reasonable range of parameters, verifying the practicality of HMO.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助韦娜采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
dydxf完成签到,获得积分10
3秒前
3秒前
dedex发布了新的文献求助10
3秒前
zhabgyucheng发布了新的文献求助10
4秒前
4秒前
lilili应助123采纳,获得10
5秒前
7秒前
7秒前
曾经的慕灵完成签到,获得积分10
7秒前
7秒前
8秒前
WT完成签到,获得积分10
9秒前
9秒前
sunny发布了新的文献求助10
9秒前
善良的靖易应助卡耐基采纳,获得10
11秒前
华仔应助scugy采纳,获得10
11秒前
科研通AI6应助cc采纳,获得10
11秒前
WEI发布了新的文献求助10
11秒前
12秒前
12秒前
小天完成签到,获得积分10
12秒前
Guang完成签到,获得积分10
14秒前
siyu发布了新的文献求助10
15秒前
FashionBoy应助XXXX采纳,获得10
16秒前
科研通AI2S应助Pupil采纳,获得30
16秒前
16秒前
18秒前
不知名医学生完成签到,获得积分10
19秒前
秃顶水箭龟完成签到,获得积分10
19秒前
Churchill87426完成签到,获得积分10
20秒前
21秒前
x2222发布了新的文献求助10
22秒前
22秒前
DDD完成签到 ,获得积分10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642264
求助须知:如何正确求助?哪些是违规求助? 4758561
关于积分的说明 15017114
捐赠科研通 4800890
什么是DOI,文献DOI怎么找? 2566214
邀请新用户注册赠送积分活动 1524333
关于科研通互助平台的介绍 1483913