共价键
水溶液
锌
离子
无机化学
有机化学
化学
作者
Lihua Li,Haohao Yang,Hui Peng,Ziqiang Lei,Yuxi Xu
标识
DOI:10.1002/chem.202302502
摘要
Abstract The development and utilization of green renewable energy are imperative with the aggravation of environmental pollution and energy crisis. In recent years, the exploration of electrochemical energy storage systems has gradually become a research hotspot in energy. Among them, aqueous zinc‐ion batteries (ZIBs) have progressively developed into highly competitive and efficient energy storage devices owing to their inherent safety, natural abundance, and higher theoretical capacity. However, the practical application of ZIBs suffers from the limitation of challenges such as the absence of proper cathode materials and the unavoidable zinc dendrites and side reactions of Zn anode. Covalent organic frameworks (COFs) are an attractive class of electrode materials due to their inherent advantages, like structural designability, high stability, and ordered‐open channels, bestowing them with great potential to overcome the problems of ZIBs. In this review, we concentrate on the discussion of designed strategies of COFs applied to ZIBs. Furthermore, the methods of using COFs to solve the challenging problems of cathode development, anode modification, and electrolyte optimization for ZIBs are summarized. Finally, the existing difficulties, solution measures, and prospects of COFs for ZIBs applications are discussed. Our commentary hopes to serve as a valuable reference for developing COFs‐based ZIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI