MDformer: A transformer-based method for predicting miRNA-Disease associations using multi-source feature fusion and maximal meta-path instances encoding

计算机科学 编码器 人工智能 变压器 特征(语言学) 源代码 深度学习 模式识别(心理学) 人工神经网络 机器学习 数据挖掘 量子力学 操作系统 物理 哲学 电压 语言学
作者
Benzhi Dong,Weidong Sun,Dali Xu,Guohua Wang,Tianjiao Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:167: 107585-107585 被引量:1
标识
DOI:10.1016/j.compbiomed.2023.107585
摘要

There is a growing body of evidence suggesting that microRNAs (miRNAs), small biological molecules, play a crucial role in the diagnosis, treatment, and prognostic assessment of diseases. However, it is often inefficient to verify the association between miRNAs and diseases (MDA) through traditional experimental methods. Based on this situation, researchers have proposed various computational-based methods, but the existing methods often have many drawbacks in terms of predictive effectiveness and accuracy. Therefore, in order to improve the prediction performance of computational methods, we propose a transformer-based prediction model (MDformer) for multi-source feature information. Specifically, first, we consider multiple features of miRNAs and diseases from the molecular biology perspective and utilize them in a fusion. Then high-quality node feature embeddings were generated using a feature encoder based on the transformer architecture and meta-path instances. Finally, a deep neural network was built for MDA prediction. To evaluate the performance of our model, we performed multiple 5-fold cross-validations as well as comparison experiments on HMDD v3.2 and HMDD v2.0 databases, and the experimental results of the average ROC area under the curve (AUC) were higher than the comparative methods for both databases at 0.9506 and 0.9369. We conducted case studies on five highly lethal cancers (breast, lung, colorectal, gastric, and hepatocellular cancers), and the first 30 predictions for these five diseases achieved 97.3% accuracy. In conclusion, MDformer is a reliable and scientifically sound tool that can be used to accurately predict MDA. In addition, the source code is available at https://github.com/Linda908/MDformer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小黑鲨完成签到 ,获得积分10
刚刚
Li应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
昏睡的蟠桃应助科研通管家采纳,获得100
1秒前
烟花应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得30
1秒前
林师刚完成签到,获得积分10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
2秒前
INSAT完成签到,获得积分10
2秒前
SciGPT应助怕黑的擎采纳,获得10
3秒前
3秒前
3秒前
wcy完成签到 ,获得积分10
4秒前
4秒前
科研通AI2S应助是小明啦采纳,获得10
6秒前
6秒前
舒心平蝶完成签到 ,获得积分10
7秒前
Lili发布了新的文献求助10
7秒前
aaaa完成签到,获得积分10
8秒前
pluto应助HUangg采纳,获得10
8秒前
开朗若雁发布了新的文献求助10
8秒前
王先生完成签到,获得积分10
9秒前
9秒前
CodeCraft应助温良采纳,获得10
10秒前
摸俞发布了新的文献求助10
11秒前
香蕉觅云应助夜曲采纳,获得10
11秒前
14秒前
夏目发布了新的文献求助10
14秒前
叽里呱啦完成签到,获得积分20
17秒前
月亮完成签到,获得积分10
17秒前
cff完成签到 ,获得积分10
18秒前
19秒前
余味应助自然尔琴采纳,获得10
22秒前
22秒前
23秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801430
求助须知:如何正确求助?哪些是违规求助? 3347140
关于积分的说明 10332081
捐赠科研通 3063446
什么是DOI,文献DOI怎么找? 1681691
邀请新用户注册赠送积分活动 807670
科研通“疑难数据库(出版商)”最低求助积分说明 763843