Counting manatee aggregations using deep neural networks and Anisotropic Gaussian Kernel

海牛 计算机科学 核(代数) 人工神经网络 人工智能 高斯分布 深层神经网络 模式识别(心理学) 高斯函数 生物 数学 渔业 物理 组合数学 量子力学
作者
Zhiqiang Wang,Yiran Pang,Cihan Ulus,Xingquan Zhu
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:13 (1) 被引量:1
标识
DOI:10.1038/s41598-023-45507-3
摘要

Manatees are aquatic mammals with voracious appetites. They rely on sea grass as the main food source, and often spend up to eight hours a day grazing. They move slow and frequently stay in groups (i.e. aggregations) in shallow water to search for food, making them vulnerable to environment change and other risks. Accurate counting manatee aggregations within a region is not only biologically meaningful in observing their habit, but also crucial for designing safety rules for boaters, divers, etc., as well as scheduling nursing, intervention, and other plans. In this paper, we propose a deep learning based crowd counting approach to automatically count number of manatees within a region, by using low quality images as input. Because manatees have unique shape and they often stay in shallow water in groups, water surface reflection, occlusion, camouflage etc. making it difficult to accurately count manatee numbers. To address the challenges, we propose to use Anisotropic Gaussian Kernel (AGK), with tunable rotation and variances, to ensure that density functions can maximally capture shapes of individual manatees in different aggregations. After that, we apply AGK kernel to different types of deep neural networks primarily designed for crowd counting, including VGG, SANet, Congested Scene Recognition network (CSRNet), MARUNet etc. to learn manatee densities and calculate number of manatees in the scene. By using generic low quality images extracted from surveillance videos, our experiment results and comparison show that AGK kernel based manatee counting achieves minimum Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). The proposed method works particularly well for counting manatee aggregations in environments with complex background.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
刚刚
1秒前
烟花应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
1秒前
Owen应助coolru采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
搞怪慕凝发布了新的文献求助10
2秒前
踏实煎饼发布了新的文献求助20
2秒前
Dawn完成签到 ,获得积分10
2秒前
6秒前
8秒前
zs完成签到,获得积分10
9秒前
9秒前
小明完成签到,获得积分10
9秒前
13秒前
无限白易应助哈哈哈采纳,获得20
13秒前
Peakfeng完成签到,获得积分10
13秒前
乐乐应助烂漫煎饼采纳,获得10
13秒前
科目三应助耍酷千亦采纳,获得10
14秒前
msl2023发布了新的文献求助10
14秒前
HWM完成签到 ,获得积分10
15秒前
科研通AI2S应助跳跃尔琴采纳,获得10
15秒前
汉堡包应助跳跃尔琴采纳,获得10
15秒前
领导范儿应助跳跃尔琴采纳,获得10
15秒前
香蕉觅云应助跳跃尔琴采纳,获得10
15秒前
16秒前
zzz完成签到,获得积分10
18秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
全球膝关节骨性关节炎市场研究报告 555
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3893239
求助须知:如何正确求助?哪些是违规求助? 3436148
关于积分的说明 10798202
捐赠科研通 3161630
什么是DOI,文献DOI怎么找? 1746117
邀请新用户注册赠送积分活动 843243
科研通“疑难数据库(出版商)”最低求助积分说明 787141