锇
物理
星团(航天器)
中子
原子物理学
库仑势垒
核物理学
铼
核子
中心(范畴论)
结晶学
库仑
化学
电子
钌
催化作用
生物化学
无机化学
程序设计语言
计算机科学
标识
DOI:10.1103/physrevc.108.l051601
摘要
The cluster transfer in multinucleon-transfer reactions near Coulomb barrier energies is implemented into the master equations in the dinuclear system model, in which deuterons, tritons, $^{3}\mathrm{He}$, and $\ensuremath{\alpha}$ particles are taken into account. The effects of cluster transfer and dynamical deformation on the formation of primary and secondary fragments are systematically investigated. It is found that the inclusion of cluster transfer is favorable for fragment formation by increasing the transferring nucleons and leads to a broad mass distribution. The isotopic cross sections of wolfram, osmium, radon, and francium in $^{136}\mathrm{Xe}+^{208}\mathrm{Pb}$ reactions at an incident energy of ${E}_{\mathrm{c}.\mathrm{m}.}=450$ MeV are nicely consistent with the Argonne data. The new neutron-rich isotopes of wolfram and osmium are predicted with cross sections above 10 nb. The production mechanism of neutron-rich heavy nuclei near $N=126$ in $^{58,64,72}\mathrm{Ni}+^{198}\mathrm{Pt}$ reactions is investigated thoroughly. The cross sections for producing the neutron-rich isotopes of platinum, iridium, osmium, and rhenium in the multinucleon-transfer reactions $^{64}\mathrm{Ni}+^{198}\mathrm{Pt}$ and $^{72}\mathrm{Ni}+^{198}\mathrm{Pt}$ at center-of-mass energies of 220 and 230 MeV are estimated and proposed for future experiments.
科研通智能强力驱动
Strongly Powered by AbleSci AI