Modality Registration and Object Search Framework for UAV-based Unregistered RGB-T Image Salient Object Detection

计算机视觉 人工智能 计算机科学 RGB颜色模型 模态(人机交互) 透视图(图形) 目标检测 图像配准 对象(语法) 分割 图像(数学)
作者
Kechen Song,Hongwei Wen,Xiaogang Xue,Liming Huang,Yingying Ji,Yunhui Yan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15
标识
DOI:10.1109/tgrs.2023.3332179
摘要

UAVs are widely used in various industries, and various visual tasks under the perspective of the UAV have been widely studied. In particular, the RGB-T detection method based on UAVs has shown significant advantages. However, existing RGB-T methods are designed based on registration image pairs rather than detecting images directly acquired by UAVs. This detection process is limited by the accuracy of image registration. And image registration wastes a lot of time. To solve the above problems, we construct an unregistered RGB-T image salient object detection (SOD) dataset under the UAV perspective, known as UAV RGB-T 2400. The dataset includes many challenging scenes, and the images are not manually registered. Further, we construct a modality registration and object search (MROS) framework for unregistered RGB-T SOD. Firstly, a modality registration scheme is proposed to solve the unregistration problem of modal features. We successively perform pixel-level registration from a local perspective and semantic-level registration from a global perspective for different modal features. And we carry out the channel and spatial interaction for the different modal features in modality registration. Aiming at the interference problem in the UAV detection environment, we propose an object search scheme. The two high-level features are used to search the object location, and the three low-level features are used to refine the object and produce prediction results. Experimental results on the UAV RGB-T 2400 dataset show that MROS is effective compared with state-of-the-art methods. The code is available at: https://github.com/VDT-2048/UAV-RGB-T-2400.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
自由的寒香完成签到,获得积分10
刚刚
Fangfang发布了新的文献求助10
1秒前
JamesPei应助轻松笙采纳,获得10
1秒前
脑洞疼应助温暖砖头采纳,获得10
1秒前
2秒前
fabius0351完成签到 ,获得积分10
4秒前
彭于晏应助自由的寒香采纳,获得10
5秒前
茶包完成签到,获得积分10
6秒前
actor2006发布了新的文献求助30
6秒前
9秒前
11秒前
wankai发布了新的文献求助10
11秒前
科研通AI5应助黎明森采纳,获得10
11秒前
时生111完成签到 ,获得积分10
11秒前
12秒前
HHYYAA发布了新的文献求助10
16秒前
16秒前
温暖砖头发布了新的文献求助10
17秒前
黄鑫涛完成签到,获得积分10
20秒前
21秒前
Ephemeral完成签到,获得积分10
21秒前
亮不卡完成签到 ,获得积分10
21秒前
whh123完成签到 ,获得积分10
22秒前
Fangfang完成签到,获得积分10
24秒前
26秒前
blacksmith0给blacksmith0的求助进行了留言
30秒前
HHYYAA完成签到,获得积分10
30秒前
章章完成签到,获得积分20
31秒前
Z123完成签到,获得积分10
32秒前
黎明森发布了新的文献求助10
32秒前
你好完成签到 ,获得积分10
34秒前
Maming完成签到 ,获得积分10
34秒前
36秒前
taotao完成签到 ,获得积分10
37秒前
lling完成签到 ,获得积分10
37秒前
youyouyou完成签到,获得积分10
38秒前
39秒前
39秒前
树池完成签到,获得积分10
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779530
求助须知:如何正确求助?哪些是违规求助? 3325020
关于积分的说明 10220974
捐赠科研通 3040147
什么是DOI,文献DOI怎么找? 1668640
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522