Simultaneously enhancing strength and ductility of HCP titanium via multi-modal grain induced extra <c+a> dislocation hardening

材料科学 延展性(地球科学) 位错 硬化(计算) 冶金 应变硬化指数 复合材料 蠕动 图层(电子)
作者
Lei Gu,Ao Meng,Xiang Chen,Yaohua Zhao
出处
期刊:Acta Materialia [Elsevier]
卷期号:252: 118949-118949 被引量:7
标识
DOI:10.1016/j.actamat.2023.118949
摘要

According to Considère necking criterion, enhancing strength of a material will decrease its elongation to failure, i.e. ductility, even if the strain hardening rate remains unchanged. Unfortunately, four traditional strengthening mechanisms including grain refinement, deformation, solid solution and 2nd-phase particle strengthening increase the yield strength by increasing the critical shear stress for slip initiation and unexceptionally reduce the strain hardening ability and ductility. Recent experiments revealed that implementation of heterostructures can produce extra hetero-deformation induced (HDI) hardening and thus reduce ductility loss while enhancing strength. However, the improved ductility was still less than that of coarse-grained counterparts. Here we fabricated a bulk heterostructured Ti with a uniform multi-modal grain size distribution in which the single individual micro-grain is surrounded and constrained by three-dimensional ultrafine grains. Tensile tests revealed the multi-modal Ti has a high yield strength of 800 MPa, ductility of 28.5%, and outstanding HDI hardening effect compared with its coarse-grained counterparts (a yield strength of 550 MPa and ductility of 26.5%). These mechanical properties of our multi-modal Ti are also superior to other literature reported data of heterostructured Ti. Microstructural characterization further reveals the uniform distribution between hard and soft domains produces maximum interface density and HDI hardening effect. Moreover, the HDI causes extra 〈c + a〉 geometrically necessary dislocations piling ups in the constrained micro-grains, which produce enough and extra strain hardening to maintain and even enhance slightly the ductility. Our work provides a strategy to simultaneously enhance strength and ductility of metals via enough and extra strain hardening capability increase.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪闪尔风发布了新的文献求助10
刚刚
共享精神应助欧阳采纳,获得10
刚刚
1秒前
张燕完成签到,获得积分10
2秒前
天天看文献完成签到,获得积分10
3秒前
4秒前
pp发布了新的文献求助10
7秒前
8秒前
viyou发布了新的文献求助10
9秒前
BaHdana-发布了新的文献求助10
14秒前
502s完成签到,获得积分20
14秒前
深情安青应助huhu采纳,获得10
16秒前
深情安青应助高高芷采纳,获得10
18秒前
18秒前
完美世界应助一口奶精采纳,获得10
23秒前
huhu完成签到,获得积分10
25秒前
27秒前
28秒前
也不尬别人完成签到,获得积分10
28秒前
Z-先森完成签到,获得积分10
28秒前
BaHdana-完成签到,获得积分20
29秒前
32秒前
hyde完成签到,获得积分10
32秒前
34秒前
35秒前
jane完成签到 ,获得积分10
36秒前
38秒前
zhq完成签到,获得积分10
38秒前
杨1998完成签到,获得积分10
40秒前
眼睛大大米完成签到,获得积分20
40秒前
re完成签到,获得积分10
41秒前
无心的怜烟完成签到,获得积分10
41秒前
pp完成签到,获得积分10
41秒前
夜乡晨完成签到,获得积分10
42秒前
Hello应助院士候选人之一采纳,获得10
44秒前
zzz完成签到 ,获得积分10
47秒前
VPN不好用完成签到,获得积分10
48秒前
benben055应助也不尬别人采纳,获得10
49秒前
黑椒HJ发布了新的文献求助10
49秒前
51秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Teaching Social and Emotional Learning in Physical Education 900
The three stars each : the Astrolabes and related texts 550
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
Chinese-English Translation Lexicon Version 3.0 500
Recherches Ethnographiques sue les Yao dans la Chine du Sud 500
Two-sample Mendelian randomization analysis reveals causal relationships between blood lipids and venous thromboembolism 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2399171
求助须知:如何正确求助?哪些是违规求助? 2099976
关于积分的说明 5294254
捐赠科研通 1827716
什么是DOI,文献DOI怎么找? 911099
版权声明 560078
科研通“疑难数据库(出版商)”最低求助积分说明 486994