Improvement of blueberry freshness prediction based on machine learning and multi-source sensing in the cold chain logistics

冷链 支持向量机 机器学习 计算机科学 人工智能 工艺工程 数据挖掘 食品科学 化学 工程类
作者
Wentao Huang,Xuepei Wang,Junchang Zhang,Jie Xia,Xiaoshuan Zhang
出处
期刊:Food Control [Elsevier BV]
卷期号:145: 109496-109496 被引量:97
标识
DOI:10.1016/j.foodcont.2022.109496
摘要

Traditional fruit freshness prediction and modeling heavily rely on various physicochemical indicators (such as water loss rate, pH, and VC content), which is facing predicaments of time-consuming, laborious, destructive, and low prediction accuracy. To this end, this paper proposes a new method for fruit freshness prediction based on multi-sensing technology and machine learning algorithm, thereby improving the automation, intelligentialize, and high accuracy of fruit freshness prediction. The critical control points of blueberry cold chain logistics were analyzed firstly based on the HACCP method, identifying the key gas parameters (O2, CO2, and C2H4) and interaction mechanisms of gas and blueberry freshness. Then the blueberry cold chain microenvironment monitoring platform (BCCMMP) was developed for critical gas content monitoring at different temperatures (0 °C, 5 °C, and 22 °C). It was demonstrated that gas information can replace quality information to characterize blueberry freshness, and further emerging machine learning (ML) algorithms (BP, RBF, SVM, and ELM) were constructed for blueberry freshness prediction using critical gas information, and the results showed prediction accuracies of 90.87% (BP), 92.24% (RBF), 94.01% (SVM), and 91.31% (ELM). By contrast, the 85.10% prediction accuracy was achieved by the traditional Arrhenius equation method based on temperature and quality parameters. Through the automatic non-destructive acquisition of sensing data and emerging machine learning algorithms, this paper provides a new approach to improving the freshness prediction accuracy and food quality management level during fruit cold chain logistics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助乐观沛白采纳,获得10
2秒前
2秒前
太阳花发布了新的文献求助10
3秒前
舍曲林发布了新的文献求助10
4秒前
SHAO应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
地表飞猪应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
ED应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得30
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
SYLH应助科研通管家采纳,获得30
6秒前
星辰大海应助科研通管家采纳,获得30
7秒前
12秒前
lxp发布了新的文献求助30
16秒前
19秒前
大模型应助lxp采纳,获得10
22秒前
放倒巨大豆蔓完成签到 ,获得积分10
23秒前
牛文文发布了新的文献求助10
24秒前
ztl完成签到 ,获得积分10
27秒前
xkxkii发布了新的文献求助10
28秒前
lc发布了新的文献求助10
28秒前
Akim应助丹妮采纳,获得10
30秒前
李木子完成签到 ,获得积分10
33秒前
可爱的函函应助牛文文采纳,获得10
34秒前
38秒前
冷艳的道天完成签到 ,获得积分10
38秒前
40秒前
李健的小迷弟应助临澈采纳,获得10
40秒前
果酱的奥特曼完成签到,获得积分10
41秒前
隐形曼青应助岳凯采纳,获得10
42秒前
DE2022发布了新的文献求助10
43秒前
Winter完成签到,获得积分10
43秒前
風声鶴唳完成签到,获得积分10
44秒前
风清扬应助hefang采纳,获得10
44秒前
科目三应助hefang采纳,获得10
44秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993097
求助须知:如何正确求助?哪些是违规求助? 3534001
关于积分的说明 11264347
捐赠科研通 3273705
什么是DOI,文献DOI怎么找? 1806142
邀请新用户注册赠送积分活动 883003
科研通“疑难数据库(出版商)”最低求助积分说明 809652