A transfer learning-physics informed neural network (TL-PINN) for vortex-induced vibration

可预测性 人工神经网络 振动 领域(数学) 非线性系统 计算机科学 集合(抽象数据类型) 涡流 人工智能 机器学习 物理 数学 声学 机械 量子力学 程序设计语言 纯数学
作者
Hesheng Tang,Yangyang Liao,Hu Yang,Liyu Xie
出处
期刊:Ocean Engineering [Elsevier BV]
卷期号:266: 113101-113101 被引量:36
标识
DOI:10.1016/j.oceaneng.2022.113101
摘要

Vortex-induced vibration (VIV) is a typical nonlinear fluid-structure interaction (FSI) phenomenon, which widely exists in practical engineering (such as flexible risers, bridges and aircraft wings). Conventional numerical simulation and data-driven approaches for VIV analysis often suffer from the challenges of computational cost and dataset acquisition. This paper proposed a physics-informed neural network (PINN) enhanced by transfer learning (TL) to study a VIV system (2D). The TL-PINN only used 1/2, 1/4 and 1/8 of the training set (for PINN model) to reconstruct the information of flow field and structure, but with the same prediction accuracy as PINN model. In addition, a stepwise iterative training strategy was proposed to train PINN model. The strategy can effectively reduce the dependence of neural networks on data sets, so as to reduce the training cost of PINN model. The results show that PINN with the stepwise iterative training strategy and TL-PINN can enhance learning efficiency and keep predictability without requiring a huge quantity of datasets. Based on the proposed method, limited and scattered label data from monitoring, numerical and experimental can be fused to realize the reconstruction and prediction of flow field and structure information. It can break the limitation of monitoring equipment and methods in practical projects, and promote the in-depth study of VIV.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
等等发布了新的文献求助10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得20
1秒前
天涯是我发布了新的文献求助10
1秒前
东方三问应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得30
2秒前
靳子劼发布了新的文献求助10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得30
2秒前
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
3秒前
东方三问应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
fff完成签到,获得积分10
4秒前
4秒前
流氓兔完成签到,获得积分10
4秒前
4秒前
小小柴发布了新的文献求助10
5秒前
诸葛御风举报单薄的英姑求助涉嫌违规
5秒前
传奇3应助123采纳,获得30
6秒前
滚滚发布了新的文献求助10
7秒前
7秒前
7秒前
卤蛋发布了新的文献求助30
7秒前
8秒前
8秒前
8秒前
英姑应助Avra采纳,获得10
8秒前
曾经的路灯完成签到,获得积分10
8秒前
9秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796310
求助须知:如何正确求助?哪些是违规求助? 3341256
关于积分的说明 10305642
捐赠科研通 3057817
什么是DOI,文献DOI怎么找? 1677946
邀请新用户注册赠送积分活动 805721
科研通“疑难数据库(出版商)”最低求助积分说明 762759