离子液体
材料科学
执行机构
人工肌肉
电解质
纤维素
离子键合
电压
复合材料
膜
纳米技术
化学工程
电极
离子
电气工程
化学
工程类
物理化学
生物化学
催化作用
有机化学
作者
Fan Wang,Lei Wang,Fang‐Fang Shen,Donghai Wang,Wenhao Shen
摘要
Abstract High‐performance electro‐responsive ionic soft actuators with low actuation voltage, large bending strain, and ecofriendly functionalities have received great interest in soft robots, biomimetic robots, biomedical devise, flexible electronics, and wearable devices. Herein, we report a novel ionic soft actuator using biofriendly microfibrillated cellulose (MFC) and PEDOT:PSS, which exhibited a large peak‐to‐peak displacement (11.21 mm) mm under a sinusoidal excitation of 1.5 V at 0.1 Hz, low actuation voltage, wide driving frequency, excellent actuation durability (98% retention for 2 h), and excellent controllability, due to the strong ionic interactions of MFC fibers with cations and anions of ionic liquid (IL). Furthermore, the helical MFC‐IL ionic actuator was successfully designed, displaying that the radical displacements of the helical actuator could be controlled by changing the applied frequency and voltage. Therefore, the proposed ionic actuator as well as its helical design will offer an available pathway for guiding the development of artificial muscles, biomedical active devices, soft robots, flexible electronics, and soft electronics.
科研通智能强力驱动
Strongly Powered by AbleSci AI