A hybrid framework for forecasting power generation of multiple renewable energy sources

可再生能源 计算机科学 混合动力 发电 环境经济学 功率(物理) 环境科学 业务 经济 工程类 量子力学 电气工程 物理
作者
Jianqin Zheng,Jian Du,Bohong Wang,Jiří Jaromír Klemeš,Qi Liao,Yongtu Liang
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier BV]
卷期号:172: 113046-113046 被引量:124
标识
DOI:10.1016/j.rser.2022.113046
摘要

The accurate power generation forecast of multiple renewable energy sources is significant for the power scheduling of renewable energy systems. However, previous studies focused more on the prediction of a single energy source, ignoring the relationship among different energy sources, and failing to predict accurate power generation for all energy sources simultaneously. This paper proposes a hybrid framework for the power generation forecast of multiple renewable energy sources to overcome deficiencies. A Convolutional Neural Network (CNN) is developed to extract the local correlations among multiple energy sources, the Attention-based Long Short-Term Memory (A-LSTM) network is developed to capture the nonlinear time-series characteristics of weather conditions and individual energy, and the Auto-Regression model is applied to extract the linear time-series characteristics of each energy source. The accuracy and practicality of the proposed method are verified by taking a renewable energy system as an example. The results show that the hybrid framework is more accurate than other advanced models, such as artificial neural networks and decision trees. Mean absolute errors of the proposed method are reduced by 13.4%, 22.9%, and 27.1% for solar PV, solar thermal, and wind power compared with A-LSTM. The sensitivity analysis has been conducted to test the effectiveness of each component of the proposed hybrid framework to prove the significance of energy correlation patterns with higher accuracy and stability compared with the other two patterns. • Propose a hybrid framework for power forecast of multiple renewable energy sources. • Improve forecast accuracy by considering energy correlation patterns. • Sensitivity analysis is conducted to discuss each information pattern. • Method verified by a real renewable energy system case.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚心的芹发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
chemy完成签到,获得积分10
2秒前
2秒前
2秒前
yyshhcyuwhegy发布了新的文献求助10
3秒前
king_of_zju完成签到,获得积分10
3秒前
3秒前
安详晓旋完成签到,获得积分10
4秒前
丰富寒梅完成签到 ,获得积分10
4秒前
Roach发布了新的文献求助10
4秒前
科研顺荔发布了新的文献求助10
4秒前
张兴艳完成签到,获得积分20
4秒前
4秒前
4秒前
vivia发布了新的文献求助10
5秒前
bkagyin应助637采纳,获得10
6秒前
6秒前
一一应助火星上的初柔采纳,获得10
6秒前
所所应助天才不打烊采纳,获得10
6秒前
安详晓旋发布了新的文献求助10
7秒前
行走家发布了新的文献求助10
7秒前
weirdo发布了新的文献求助10
7秒前
yf发布了新的文献求助10
9秒前
9秒前
Coco发布了新的文献求助10
9秒前
素简发布了新的文献求助10
9秒前
兴奋的问旋完成签到,获得积分10
10秒前
852应助A0228号卫星采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
街上的纸屑完成签到 ,获得积分20
11秒前
yyshhcyuwhegy发布了新的文献求助10
13秒前
半无狗狗发布了新的文献求助10
14秒前
baobao发布了新的文献求助10
15秒前
FashionBoy应助安详晓旋采纳,获得10
15秒前
王一一一一一完成签到,获得积分10
15秒前
闫123发布了新的文献求助10
16秒前
minya完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4284706
求助须知:如何正确求助?哪些是违规求助? 3812130
关于积分的说明 11941282
捐赠科研通 3458760
什么是DOI,文献DOI怎么找? 1896806
邀请新用户注册赠送积分活动 945498
科研通“疑难数据库(出版商)”最低求助积分说明 849319