A hybrid framework for forecasting power generation of multiple renewable energy sources

可再生能源 计算机科学 混合动力 发电 环境经济学 功率(物理) 环境科学 业务 经济 工程类 量子力学 电气工程 物理
作者
Jianqin Zheng,Jian Du,Bohong Wang,Jiří Jaromír Klemeš,Qi Liao,Yongtu Liang
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier BV]
卷期号:172: 113046-113046 被引量:110
标识
DOI:10.1016/j.rser.2022.113046
摘要

The accurate power generation forecast of multiple renewable energy sources is significant for the power scheduling of renewable energy systems. However, previous studies focused more on the prediction of a single energy source, ignoring the relationship among different energy sources, and failing to predict accurate power generation for all energy sources simultaneously. This paper proposes a hybrid framework for the power generation forecast of multiple renewable energy sources to overcome deficiencies. A Convolutional Neural Network (CNN) is developed to extract the local correlations among multiple energy sources, the Attention-based Long Short-Term Memory (A-LSTM) network is developed to capture the nonlinear time-series characteristics of weather conditions and individual energy, and the Auto-Regression model is applied to extract the linear time-series characteristics of each energy source. The accuracy and practicality of the proposed method are verified by taking a renewable energy system as an example. The results show that the hybrid framework is more accurate than other advanced models, such as artificial neural networks and decision trees. Mean absolute errors of the proposed method are reduced by 13.4%, 22.9%, and 27.1% for solar PV, solar thermal, and wind power compared with A-LSTM. The sensitivity analysis has been conducted to test the effectiveness of each component of the proposed hybrid framework to prove the significance of energy correlation patterns with higher accuracy and stability compared with the other two patterns. • Propose a hybrid framework for power forecast of multiple renewable energy sources. • Improve forecast accuracy by considering energy correlation patterns. • Sensitivity analysis is conducted to discuss each information pattern. • Method verified by a real renewable energy system case.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ysh发布了新的文献求助10
刚刚
1秒前
vvA11发布了新的文献求助10
1秒前
花城发布了新的文献求助10
1秒前
wyx发布了新的文献求助10
2秒前
CipherSage应助外向宛菡采纳,获得10
2秒前
样子完成签到,获得积分10
2秒前
3秒前
害羞文博发布了新的文献求助10
4秒前
5秒前
小圆发布了新的文献求助10
6秒前
陈文青完成签到,获得积分10
6秒前
6秒前
张劳西完成签到,获得积分20
6秒前
7秒前
科研通AI5应助舒适路人采纳,获得10
7秒前
Asteria完成签到,获得积分10
7秒前
orixero应助孙颂尧采纳,获得10
7秒前
8秒前
xinqisusu完成签到,获得积分20
9秒前
hehe发布了新的文献求助10
9秒前
小蘑菇应助Ysh采纳,获得10
10秒前
10秒前
10秒前
10秒前
脑洞疼应助小圆采纳,获得10
11秒前
沉静茗完成签到,获得积分10
11秒前
别问我发布了新的文献求助10
12秒前
归一发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
14秒前
所所应助cfer采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
15秒前
sctaaa发布了新的文献求助10
15秒前
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786700
求助须知:如何正确求助?哪些是违规求助? 3332381
关于积分的说明 10255367
捐赠科研通 3047723
什么是DOI,文献DOI怎么找? 1672668
邀请新用户注册赠送积分活动 801476
科研通“疑难数据库(出版商)”最低求助积分说明 760204