Detection of jelly orange granulation disease using a dual-input Resnet-Transformer model (DresT) based on acoustic vibration images and a novel acoustic vibration device

造粒 振动 变压器 声学 橙色(颜色) 计算机科学 材料科学 工程类 物理 电气工程 化学 复合材料 食品科学 电压
作者
Nan Chen,Zhi Liu,Le Dexiang,Lai Qingrong,Jiang Bingnian,Bin Li,Jian Wu,Yunfeng Song,Yande Liu
出处
期刊:Journal of Food Composition and Analysis [Elsevier BV]
卷期号:132: 106337-106337 被引量:5
标识
DOI:10.1016/j.jfca.2024.106337
摘要

Granulation is a common internal disease in citrus fruits, and it is difficult to distinguish fruits with granulation disease from their appearance. In this study, a novel acoustic vibration device based on a micro-LDV, a microphone and a resonance speaker was employed to collect acoustic vibration response signals of "Aiyuan 38" jelly orange. The one-dimensional acoustic vibration response signal was converted into acoustic vibration images, and a double-input Resnet-Transformer network (DresT) was constructed for extracting deep features in acoustic vibration images for identifying jelly-orange granulation disease. Firstly, train Drest and Resnet50 models using acoustic vibration images and compare the performance of Drest with that of Resnet50 (based on CNN). Then PLS-DA and SVM models are trained using acoustic vibration image texture features or acoustic vibration spectral features, and the performance is compared with the DresT model. The results showed that the DresT model trained using acoustic vibration images can accurately identify jelly orange granulation disease with a detection accuracy of 99.31%. The F1 of the model is 99.5%, the accuracy is 99.01%, and the recall is 100%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rcrc111发布了新的文献求助10
1秒前
2秒前
阿超完成签到,获得积分10
2秒前
3秒前
慕青应助里维斯采纳,获得20
3秒前
李新宇发布了新的文献求助10
4秒前
4秒前
6秒前
cc发布了新的文献求助10
9秒前
周钰波发布了新的文献求助20
9秒前
大模型应助啦啦啦啦啦采纳,获得10
10秒前
疯狂的夏天完成签到,获得积分10
13秒前
虚幻采枫完成签到,获得积分10
13秒前
充电宝应助yangmiemie采纳,获得10
13秒前
nini完成签到,获得积分10
15秒前
rcrc111完成签到 ,获得积分10
16秒前
科研通AI5应助周钰波采纳,获得20
16秒前
情怀应助科研通管家采纳,获得10
17秒前
17秒前
李爱国应助科研通管家采纳,获得10
17秒前
华仔应助科研通管家采纳,获得10
17秒前
酷波er应助科研通管家采纳,获得10
17秒前
MchemG应助科研通管家采纳,获得30
17秒前
无花果应助科研通管家采纳,获得10
17秒前
科研助手6应助科研通管家采纳,获得10
17秒前
华仔应助科研通管家采纳,获得10
18秒前
情怀应助科研通管家采纳,获得10
18秒前
斯文败类应助科研通管家采纳,获得10
18秒前
思源应助科研通管家采纳,获得10
18秒前
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
今后应助科研通管家采纳,获得30
18秒前
无花果应助科研通管家采纳,获得10
18秒前
18秒前
xuli-888完成签到,获得积分10
18秒前
子车茗应助科研通管家采纳,获得30
18秒前
18秒前
啦啦啦啦啦完成签到,获得积分10
19秒前
神秘玩家完成签到 ,获得积分10
22秒前
calemolet应助研友_89jr6L采纳,获得10
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776521
求助须知:如何正确求助?哪些是违规求助? 3322010
关于积分的说明 10208485
捐赠科研通 3037297
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757872