Linearly interpolating missing values in time series helps little for land cover classification using recurrent or attention networks

缺少数据 插值(计算机图形学) 线性插值 合成 土地覆盖 随机性 系列(地层学) 时间序列 计算机科学 遥感 数学 统计 人工智能 模式识别(心理学) 土地利用 地质学 古生物学 土木工程 工程类 运动(物理) 图像(数学)
作者
Xianghong Che,Hankui K. Zhang,Zhongbin B. Li,Yong Wang,Qing Sun,Dong Luo,Hao Wang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:212: 73-95 被引量:6
标识
DOI:10.1016/j.isprsjprs.2024.04.021
摘要

Satellite time series data, widely used for land cover classification, often contain missing values due to cloud contamination, which can negatively affect classification. Numerous strategies have been developed to reconstruct the missing values to produce regular time series for machine learning classifiers, among which the compositing followed by the linear interpolation is most widely used. However, the classification improvement of linear interpolation for land cover classification has not been examined. Recently developed deep learning models such as long short term memory (LSTM) and Transformer allow such examination as they can classify time series with missing values. In this study, we compared the time series composites with missing values (without linear interpolation) and the linearly interpolated time series composites (without missing values) for land cover classification. About 18 thousand Harmonized Landsat Sentinel-2 (HLS) images acquired over Amur River Basin of China (890,308 km2) in 2021 were composited to 14 16-day periods. Two time series composites were classified, i.e., (i) the 16-day composites without interpolation that have on average 15.35% 16-day periods with missing values and (ii) the linearly interpolated 16-day composites with no missing values. The classifications showed that (1) between classifications with and without linear interpolation there was < 0.2% overall accuracy differences for the bidirectional LSTM (Bi-LSTM) and < 0.5% for the Transformer both of which were smaller than model training randomness; and (2) the computation time can be saved using composites without linear interpolation. The findings suggested that it is unnecessary to use the time-consuming linear interpolation in Bi-LSTM and Transformer-based land cover classifications. The findings were confirmed by experiments for sensitivity to the number of cloud-free composites and to different classification legends using crop type classifications. It implied the linear interpolation algorithm cannot reconstruct reliable time series for land cover classifications and historical use of such method is more about mitigating the inability of traditional classifiers to handle missing values rather than improving classifications. Linear interpolation is not necessary for LSTM and Transformer with capability to handle missing values. The training datasets and developed codes in this study are made publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
立青完成签到 ,获得积分10
4秒前
小扇发布了新的文献求助10
4秒前
5秒前
6秒前
宁静的夏天完成签到,获得积分10
7秒前
丘比特应助gzf采纳,获得30
8秒前
8秒前
深情安青应助xinxin采纳,获得10
10秒前
10秒前
11秒前
11秒前
11秒前
Colo完成签到 ,获得积分10
12秒前
12秒前
沙不凡完成签到,获得积分20
14秒前
14秒前
有机分子笼完成签到,获得积分10
15秒前
签到发布了新的文献求助10
15秒前
YH给kento的求助进行了留言
17秒前
17秒前
17秒前
桐桐应助KKKK采纳,获得10
18秒前
Alex发布了新的文献求助10
18秒前
18秒前
稳重发布了新的文献求助10
19秒前
科目三应助毛毛采纳,获得20
19秒前
19秒前
科研通AI5应助MY采纳,获得10
19秒前
21秒前
gy发布了新的文献求助10
22秒前
22秒前
123发布了新的文献求助10
22秒前
咸鱼好翻身完成签到,获得积分10
22秒前
熊雅发布了新的文献求助10
24秒前
24秒前
24秒前
LIJIngcan完成签到,获得积分10
25秒前
huaner完成签到,获得积分10
25秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807036
求助须知:如何正确求助?哪些是违规求助? 3351803
关于积分的说明 10355623
捐赠科研通 3067759
什么是DOI,文献DOI怎么找? 1684707
邀请新用户注册赠送积分活动 809899
科研通“疑难数据库(出版商)”最低求助积分说明 765734