已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Linearly interpolating missing values in time series helps little for land cover classification using recurrent or attention networks

缺少数据 插值(计算机图形学) 线性插值 合成 土地覆盖 随机性 系列(地层学) 时间序列 计算机科学 遥感 数学 统计 人工智能 模式识别(心理学) 土地利用 地质学 古生物学 土木工程 工程类 运动(物理) 图像(数学)
作者
Xianghong Che,Hankui K. Zhang,Zhongbin B. Li,Yong Wang,Qing Sun,Dong Luo,Hao Wang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:212: 73-95 被引量:6
标识
DOI:10.1016/j.isprsjprs.2024.04.021
摘要

Satellite time series data, widely used for land cover classification, often contain missing values due to cloud contamination, which can negatively affect classification. Numerous strategies have been developed to reconstruct the missing values to produce regular time series for machine learning classifiers, among which the compositing followed by the linear interpolation is most widely used. However, the classification improvement of linear interpolation for land cover classification has not been examined. Recently developed deep learning models such as long short term memory (LSTM) and Transformer allow such examination as they can classify time series with missing values. In this study, we compared the time series composites with missing values (without linear interpolation) and the linearly interpolated time series composites (without missing values) for land cover classification. About 18 thousand Harmonized Landsat Sentinel-2 (HLS) images acquired over Amur River Basin of China (890,308 km2) in 2021 were composited to 14 16-day periods. Two time series composites were classified, i.e., (i) the 16-day composites without interpolation that have on average 15.35% 16-day periods with missing values and (ii) the linearly interpolated 16-day composites with no missing values. The classifications showed that (1) between classifications with and without linear interpolation there was < 0.2% overall accuracy differences for the bidirectional LSTM (Bi-LSTM) and < 0.5% for the Transformer both of which were smaller than model training randomness; and (2) the computation time can be saved using composites without linear interpolation. The findings suggested that it is unnecessary to use the time-consuming linear interpolation in Bi-LSTM and Transformer-based land cover classifications. The findings were confirmed by experiments for sensitivity to the number of cloud-free composites and to different classification legends using crop type classifications. It implied the linear interpolation algorithm cannot reconstruct reliable time series for land cover classifications and historical use of such method is more about mitigating the inability of traditional classifiers to handle missing values rather than improving classifications. Linear interpolation is not necessary for LSTM and Transformer with capability to handle missing values. The training datasets and developed codes in this study are made publicly available.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XRT关闭了XRT文献求助
1秒前
麻瓜X发布了新的文献求助10
1秒前
颜林林发布了新的文献求助10
3秒前
6秒前
小祖完成签到,获得积分10
6秒前
852应助一王打不尽采纳,获得10
7秒前
Krystal发布了新的文献求助10
7秒前
Dharma_Bums发布了新的文献求助10
11秒前
Rainy完成签到,获得积分10
12秒前
han发布了新的文献求助20
12秒前
徐团团完成签到,获得积分20
13秒前
正行者1完成签到 ,获得积分10
21秒前
裴白薇发布了新的文献求助10
21秒前
小蘑菇应助徐团团采纳,获得10
21秒前
刻苦天寿完成签到 ,获得积分10
22秒前
27秒前
Joshua完成签到,获得积分10
29秒前
大模型应助songnvshi采纳,获得10
31秒前
33秒前
35秒前
40秒前
45秒前
jasonjiang完成签到 ,获得积分0
45秒前
45秒前
Dharma_Bums发布了新的文献求助10
47秒前
47秒前
研友_VZG7GZ应助裴白薇采纳,获得10
49秒前
YIN完成签到 ,获得积分10
50秒前
50秒前
xxxhl发布了新的文献求助10
51秒前
Nature不知名作者完成签到,获得积分20
52秒前
东郭迎松发布了新的文献求助10
54秒前
有趣的银完成签到,获得积分10
55秒前
1分钟前
搜集达人应助幸福的南莲采纳,获得10
1分钟前
solar@2030发布了新的文献求助10
1分钟前
NexusExplorer应助小南采纳,获得10
1分钟前
Ssd4完成签到,获得积分10
1分钟前
QQ完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
How to Develop Robust Scale-up Strategies for Complex Injectable Dosage Forms 450
Berlitz Picture Dictionary Arabic 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5864987
求助须知:如何正确求助?哪些是违规求助? 6406246
关于积分的说明 15652568
捐赠科研通 4979440
什么是DOI,文献DOI怎么找? 2685866
邀请新用户注册赠送积分活动 1628819
关于科研通互助平台的介绍 1586524