Video-based multimodal spontaneous emotion recognition using facial expressions and physiological signals

面部表情 计算机科学 情绪识别 人工智能 模式 语音识别 模式识别(心理学) 情感计算 计算机视觉 社会科学 社会学
作者
Yassine Ouzar,Frédéric Bousefsaf,Djamaleddine Djeldjli,Choubeila Maaoui
标识
DOI:10.1109/cvprw56347.2022.00275
摘要

Human’s affective state recognition remains a challenging topic due to the complexity of emotions, which involves experiential, behavioral, and physiological elements. Since it is difficult to comprehensively describe emotion in terms of single modalities, recent studies have focused on fusion strategy to exploit the complementarity of multimodal signals. In this article, we study the feasibility of fusing facial expressions with physiological cues on human emotion recognition accuracy. The contributions of this work are threefold: 1) We propose a new spatiotemporal network for facial expression recognition using a 3D squeeze and exitation based 3D Xception architecture (squeeze and exitation Xception network). 2) We adopt the first multiple modalities fusion using single input source which, to the best of our knowledge, no existing multimodal emotion recognition system has attempted to identify emotional state from only facial videos using facial expressions and physiological signals features. 3) We compare the performance of the uni-modal approach using only facial expressions or physiological data, to multimodal systems fusing facial expressions with video-based physiological cues. In our experiments, physiological signals such as the iPPG signal and features of heart rate variability measured remotely using the imaging photoplethysmography (iPPG) method are used. The preliminary results show that the multimodal fusion model improves the accuracy of emotion recognition, and merging facial expressions features with iPPG signal gives the best accuracy with 71.90 %.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默默发布了新的文献求助10
2秒前
大灰狼完成签到 ,获得积分10
2秒前
4秒前
搜集达人应助Rico采纳,获得10
6秒前
情怀应助公西翠萱采纳,获得10
9秒前
liusui完成签到 ,获得积分10
9秒前
Wu发布了新的文献求助10
10秒前
10秒前
重要的冰绿完成签到,获得积分10
10秒前
13秒前
16秒前
为不争完成签到 ,获得积分10
18秒前
Asteria发布了新的文献求助10
19秒前
Wu完成签到,获得积分10
19秒前
Jasper应助Ancestor采纳,获得10
19秒前
科研通AI2S应助小李采纳,获得10
20秒前
22秒前
22秒前
吹球球8发布了新的文献求助10
22秒前
华仔应助眠眠冰采纳,获得10
22秒前
wly1111发布了新的文献求助10
23秒前
joleisalau发布了新的文献求助10
25秒前
公西翠萱发布了新的文献求助10
27秒前
体能行者发布了新的文献求助310
27秒前
烟花应助为不争采纳,获得10
29秒前
共享精神应助xiaofeng采纳,获得10
29秒前
30秒前
脑洞疼应助森林有木采纳,获得10
31秒前
完美世界应助成诗怡采纳,获得10
33秒前
CodeCraft应助齐路明采纳,获得10
35秒前
yuxia发布了新的文献求助10
35秒前
35秒前
rye227应助abcdefg采纳,获得10
36秒前
36秒前
眠眠冰发布了新的文献求助10
36秒前
sunxs发布了新的文献求助10
42秒前
SciGPT应助科研通管家采纳,获得30
42秒前
英俊的铭应助科研通管家采纳,获得10
42秒前
42秒前
酷波er应助科研通管家采纳,获得10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778270
求助须知:如何正确求助?哪些是违规求助? 3323870
关于积分的说明 10216436
捐赠科研通 3039122
什么是DOI,文献DOI怎么找? 1667788
邀请新用户注册赠送积分活动 798409
科研通“疑难数据库(出版商)”最低求助积分说明 758366