Predicting diabetic kidney disease for type 2 diabetes mellitus by machine learning in the real world: a multicenter retrospective study

医学 接收机工作特性 回顾性队列研究 机器学习 糖尿病 范畴变量 人工智能 肾脏疾病 列线图 2型糖尿病 2型糖尿病 计算机科学 内科学 内分泌学
作者
X Liu,Minjie Duan,Hao Huang,Yang Zhang,Tian Yu Xiang,Wu ceng Niu,Bei Zhou,Haolin Wang,Ting ting Zhang
出处
期刊:Frontiers in Endocrinology [Frontiers Media]
卷期号:14 被引量:21
标识
DOI:10.3389/fendo.2023.1184190
摘要

Objective Diabetic kidney disease (DKD) has been reported as a main microvascular complication of diabetes mellitus. Although renal biopsy is capable of distinguishing DKD from Non Diabetic kidney disease(NDKD), no gold standard has been validated to assess the development of DKD.This study aimed to build an auxiliary diagnosis model for type 2 Diabetic kidney disease (T2DKD) based on machine learning algorithms. Methods Clinical data on 3624 individuals with type 2 diabetes (T2DM) was gathered from January 1, 2019 to December 31, 2019 using a multi-center retrospective database. The data fell into a training set and a validation set at random at a ratio of 8:2. To identify critical clinical variables, the absolute shrinkage and selection operator with the lowest number was employed. Fifteen machine learning models were built to support the diagnosis of T2DKD, and the optimal model was selected in accordance with the area under the receiver operating characteristic curve (AUC) and accuracy. The model was improved with the use of Bayesian Optimization methods. The Shapley Additive explanations (SHAP) approach was used to illustrate prediction findings. Results DKD was diagnosed in 1856 (51.2 percent) of the 3624 individuals within the final cohort. As revealed by the SHAP findings, the Categorical Boosting (CatBoost) model achieved the optimal performance 1in the prediction of the risk of T2DKD, with an AUC of 0.86 based on the top 38 characteristics. The SHAP findings suggested that a simplified CatBoost model with an AUC of 0.84 was built in accordance with the top 12 characteristics. The more basic model features consisted of systolic blood pressure (SBP), creatinine (CREA), length of stay (LOS), thrombin time (TT), Age, prothrombin time (PT), platelet large cell ratio (P-LCR), albumin (ALB), glucose (GLU), fibrinogen (FIB-C), red blood cell distribution width-standard deviation (RDW-SD), as well as hemoglobin A1C(HbA1C). Conclusion A machine learning-based model for the prediction of the risk of developing T2DKD was built, and its effectiveness was verified. The CatBoost model can contribute to the diagnosis of T2DKD. Clinicians could gain more insights into the outcomes if the ML model is made interpretable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WZH完成签到,获得积分10
刚刚
jojo发布了新的文献求助10
刚刚
风清扬应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
Kriten应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
23应助科研通管家采纳,获得10
1秒前
23应助科研通管家采纳,获得10
1秒前
哈基米德应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
zyy6657完成签到,获得积分10
3秒前
鱼秋完成签到,获得积分10
3秒前
会魔法的老人完成签到,获得积分10
3秒前
香蕉觅云应助zz采纳,获得10
5秒前
sk夏冰完成签到 ,获得积分10
8秒前
暴躁的海ge完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
runtang完成签到,获得积分10
12秒前
Lee发布了新的文献求助10
14秒前
xinyu应助Anoxia采纳,获得50
15秒前
乐天应助Anoxia采纳,获得50
15秒前
15秒前
情怀应助LiChard采纳,获得10
15秒前
大模型应助fantasy采纳,获得10
16秒前
传奇3应助追寻的忆南采纳,获得10
18秒前
冒泡完成签到,获得积分10
19秒前
Jasper应助个性的振家采纳,获得10
21秒前
情怀应助牧木采纳,获得10
21秒前
22秒前
22秒前
22秒前
23应助费雪卉采纳,获得30
24秒前
25秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
Cochrane Handbook for Systematic Reviews ofInterventions(current version) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4101097
求助须知:如何正确求助?哪些是违规求助? 3638945
关于积分的说明 11531492
捐赠科研通 3347670
什么是DOI,文献DOI怎么找? 1839748
邀请新用户注册赠送积分活动 906984
科研通“疑难数据库(出版商)”最低求助积分说明 824163