Intrusion Detection in 5G Cellular Network Using Machine Learning

计算机科学 蜂窝网络 入侵检测系统 人工智能 计算机网络 机器学习
作者
Ishtiaque Mahmood,Tahir Alyas,Sagheer Abbas,Tariq Shahzad,Qaiser Abbas,Khmaies Ouahada
出处
期刊:Computer systems science and engineering [Computers, Materials and Continua (Tech Science Press)]
卷期号:47 (2): 2439-2453 被引量:3
标识
DOI:10.32604/csse.2023.033842
摘要

Attacks on fully integrated servers, apps, and communication networks via the Internet of Things (IoT) are growing exponentially.Sensitive devices' effectiveness harms end users, increases cyber threats and identity theft, raises costs, and negatively impacts income as problems brought on by the Internet of Things network go unnoticed for extended periods.Attacks on Internet of Things interfaces must be closely monitored in real time for effective safety and security.Following the 1, 2, 3, and 4G cellular networks, the 5th generation wireless 5G network is indeed the great invasion of mankind and is known as the global advancement of cellular networks.Even to this day, experts are working on the evolution's sixth generation (6G).It offers amazing capabilities for connecting everything, including gadgets and machines, with wavelengths ranging from 1 to 10 mm and frequencies ranging from 300 MHz to 3 GHz.It gives you the most recent information.Many countries have already established this technology within their border.Security is the most crucial aspect of using a 5G network.Because of the absence of study and network deployment, new technology first introduces new gaps for attackers and hackers.Internet Protocol(IP) attacks and intrusion will become more prevalent in this system.An efficient approach to detect intrusion in the 5G network using a Machine Learning algorithm will be provided in this research.This research will highlight the high accuracy rate by validating it for unidentified and suspicious circumstances in the 5G network, such as intruder hackers/attackers.After applying different machine learning algorithms, obtained the best result on Linear Regression Algorithm's implementation on the dataset results in 92.12% on test data and 92.13% on train data with 92% precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
赘婿应助Fqdgest采纳,获得10
1秒前
欣喜书蕾完成签到,获得积分10
4秒前
盛夏如花发布了新的文献求助10
4秒前
5秒前
7秒前
VelesAlexei完成签到,获得积分10
8秒前
香蕉觅云应助欣妹儿采纳,获得10
9秒前
11秒前
Elaine完成签到,获得积分10
12秒前
14秒前
小花排草发布了新的文献求助10
15秒前
16秒前
18秒前
18秒前
111发布了新的文献求助10
19秒前
彩色的海蓝完成签到,获得积分10
23秒前
23秒前
小花排草完成签到,获得积分10
24秒前
恃6发布了新的文献求助10
25秒前
wanci应助朴素烨霖采纳,获得10
25秒前
幸运星发布了新的文献求助10
27秒前
32秒前
勤恳的雪卉完成签到,获得积分0
38秒前
stoneff612发布了新的文献求助10
38秒前
38秒前
40秒前
盛夏如花发布了新的文献求助10
41秒前
侃侃完成签到,获得积分10
47秒前
tdtk发布了新的文献求助10
47秒前
stoneff612完成签到,获得积分20
47秒前
WeiZENG完成签到,获得积分10
47秒前
小半完成签到,获得积分10
48秒前
50秒前
Zoeytam完成签到,获得积分10
55秒前
56秒前
充电宝应助辛坦夫采纳,获得10
56秒前
脾气暴躁的小兔完成签到,获得积分10
58秒前
Gesj应助白泽阳采纳,获得10
59秒前
CikY完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782317
求助须知:如何正确求助?哪些是违规求助? 3327805
关于积分的说明 10233193
捐赠科研通 3042700
什么是DOI,文献DOI怎么找? 1670153
邀请新用户注册赠送积分活动 799658
科研通“疑难数据库(出版商)”最低求助积分说明 758876