Development and validation of a practical machine learning model to predict sepsis after liver transplantation

医学 败血症 肝移植 围手术期 接收机工作特性 移植 曲线下面积 外科 内科学
作者
Chaojin Chen,Bingcheng Chen,Jing Yang,Xiaoyue Li,Xiaorong Peng,Yawei Feng,Rongchang Guo,Fengyuan Zou,Shaoli Zhou,Ziqing Hei
出处
期刊:Annals of Medicine [Informa]
卷期号:55 (1): 624-633 被引量:12
标识
DOI:10.1080/07853890.2023.2179104
摘要

Background Postoperative sepsis is one of the main causes of mortality after liver transplantation (LT). Our study aimed to develop and validate a predictive model for postoperative sepsis within 7 d in LT recipients using machine learning (ML) technology.Methods Data of 786 patients received LT from January 2015 to January 2020 was retrospectively extracted from the big data platform of Third Affiliated Hospital of Sun Yat-sen University. Seven ML models were developed to predict postoperative sepsis. The area under the receiver-operating curve (AUC), sensitivity, specificity, accuracy, and f1-score were evaluated as the model performances. The model with the best performance was validated in an independent dataset involving 118 adult LT cases from February 2020 to April 2021. The postoperative sepsis-associated outcomes were also explored in the study.Results After excluding 109 patients according to the exclusion criteria, 677 patients underwent LT were finally included in the analysis. Among them, 216 (31.9%) were diagnosed with sepsis after LT, which were related to more perioperative complications, increased postoperative hospital stay and mortality after LT (all p < .05). Our results revealed that a larger volume of red blood cell infusion, ascitic removal, blood loss and gastric drainage, less volume of crystalloid infusion and urine, longer anesthesia time, higher level of preoperative TBIL were the top 8 important variables contributing to the prediction of post-LT sepsis. The Random Forest Classifier (RF) model showed the best overall performance to predict sepsis after LT among the seven ML models developed in the study, with an AUC of 0.731, an accuracy of 71.6%, the sensitivity of 62.1%, and specificity of 76.1% in the internal validation set, and a comparable AUC of 0.755 in the external validation set.Conclusions Our study enrolled eight pre- and intra-operative variables to develop an RF-based predictive model of post-LT sepsis to assist clinical decision-making procedure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蔡蔡不菜菜完成签到,获得积分10
刚刚
希望天下0贩的0应助孟君采纳,获得10
1秒前
5秒前
夹心饼干完成签到 ,获得积分10
5秒前
日月归尘完成签到,获得积分10
6秒前
橘子sungua完成签到,获得积分10
7秒前
张祥辉完成签到,获得积分20
8秒前
CipherSage应助陈之约采纳,获得10
8秒前
9秒前
xiaoqianqian174完成签到,获得积分10
9秒前
9秒前
10秒前
Xiaoxiao应助认真的成风采纳,获得10
11秒前
二宝发布了新的文献求助10
12秒前
萱瑄爸爸完成签到,获得积分10
12秒前
13秒前
13秒前
爱睡午觉完成签到,获得积分10
14秒前
张祥辉发布了新的文献求助10
15秒前
好好学习发布了新的文献求助10
15秒前
万书白发布了新的文献求助10
16秒前
哆1627_发布了新的文献求助10
16秒前
拾玖发布了新的文献求助10
17秒前
大个应助djdh采纳,获得10
17秒前
18秒前
18秒前
Tq完成签到,获得积分10
19秒前
核桃应助科研通管家采纳,获得10
19秒前
YTY应助科研通管家采纳,获得30
20秒前
Ava应助科研通管家采纳,获得10
20秒前
搜集达人应助科研通管家采纳,获得10
20秒前
NexusExplorer应助科研通管家采纳,获得10
20秒前
CipherSage应助科研通管家采纳,获得10
20秒前
小二郎应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得30
20秒前
顾矜应助科研通管家采纳,获得30
20秒前
CipherSage应助科研通管家采纳,获得20
20秒前
20秒前
FashionBoy应助二宝采纳,获得10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4466869
求助须知:如何正确求助?哪些是违规求助? 3928410
关于积分的说明 12190126
捐赠科研通 3581657
什么是DOI,文献DOI怎么找? 1968208
邀请新用户注册赠送积分活动 1006621
科研通“疑难数据库(出版商)”最低求助积分说明 900772