Development and validation of a practical machine learning model to predict sepsis after liver transplantation

医学 败血症 肝移植 围手术期 接收机工作特性 移植 曲线下面积 外科 内科学
作者
Chaojin Chen,Bingcheng Chen,Jing Yang,Xiaoyue Li,Xiaorong Peng,Yawei Feng,Rongchang Guo,Fengyuan Zou,Shaoli Zhou,Ziqing Hei
出处
期刊:Annals of Medicine [Informa]
卷期号:55 (1): 624-633 被引量:12
标识
DOI:10.1080/07853890.2023.2179104
摘要

Background Postoperative sepsis is one of the main causes of mortality after liver transplantation (LT). Our study aimed to develop and validate a predictive model for postoperative sepsis within 7 d in LT recipients using machine learning (ML) technology.Methods Data of 786 patients received LT from January 2015 to January 2020 was retrospectively extracted from the big data platform of Third Affiliated Hospital of Sun Yat-sen University. Seven ML models were developed to predict postoperative sepsis. The area under the receiver-operating curve (AUC), sensitivity, specificity, accuracy, and f1-score were evaluated as the model performances. The model with the best performance was validated in an independent dataset involving 118 adult LT cases from February 2020 to April 2021. The postoperative sepsis-associated outcomes were also explored in the study.Results After excluding 109 patients according to the exclusion criteria, 677 patients underwent LT were finally included in the analysis. Among them, 216 (31.9%) were diagnosed with sepsis after LT, which were related to more perioperative complications, increased postoperative hospital stay and mortality after LT (all p < .05). Our results revealed that a larger volume of red blood cell infusion, ascitic removal, blood loss and gastric drainage, less volume of crystalloid infusion and urine, longer anesthesia time, higher level of preoperative TBIL were the top 8 important variables contributing to the prediction of post-LT sepsis. The Random Forest Classifier (RF) model showed the best overall performance to predict sepsis after LT among the seven ML models developed in the study, with an AUC of 0.731, an accuracy of 71.6%, the sensitivity of 62.1%, and specificity of 76.1% in the internal validation set, and a comparable AUC of 0.755 in the external validation set.Conclusions Our study enrolled eight pre- and intra-operative variables to develop an RF-based predictive model of post-LT sepsis to assist clinical decision-making procedure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑笑的妙松完成签到,获得积分10
1秒前
1秒前
1秒前
叉叉茶完成签到,获得积分10
2秒前
凯当以慷完成签到,获得积分10
2秒前
kero完成签到,获得积分10
2秒前
Sindy发布了新的文献求助10
2秒前
黄慧慧完成签到,获得积分20
2秒前
insissst发布了新的文献求助10
2秒前
4秒前
郦稀发布了新的文献求助10
5秒前
小橙子完成签到 ,获得积分10
6秒前
JXL发布了新的文献求助20
7秒前
10秒前
乐乐应助Sindy采纳,获得30
10秒前
xxiao完成签到 ,获得积分10
10秒前
12秒前
宣灵薇完成签到 ,获得积分10
14秒前
西卡诺发布了新的文献求助10
14秒前
insissst完成签到,获得积分10
15秒前
唐瑞玖完成签到,获得积分10
16秒前
酷波er应助端庄谷南采纳,获得10
16秒前
喜悦冰烟完成签到 ,获得积分10
17秒前
Sjingjia完成签到,获得积分10
18秒前
喜悦的秋柔完成签到,获得积分10
19秒前
诸青梦完成签到 ,获得积分10
19秒前
僦是卜够完成签到,获得积分10
20秒前
23秒前
竹筏过海应助结实的山菡采纳,获得30
23秒前
所所应助yycc采纳,获得10
23秒前
huangr123完成签到 ,获得积分10
24秒前
25秒前
CNAxiaozhu7完成签到,获得积分10
26秒前
烂漫人达完成签到 ,获得积分10
26秒前
飞火完成签到 ,获得积分10
27秒前
石狗西完成签到,获得积分10
30秒前
seraphmay完成签到,获得积分10
31秒前
不安寒风发布了新的文献求助10
31秒前
漂亮夏兰完成签到 ,获得积分10
31秒前
慕洋发布了新的文献求助10
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782938
求助须知:如何正确求助?哪些是违规求助? 3328272
关于积分的说明 10235420
捐赠科研通 3043338
什么是DOI,文献DOI怎么找? 1670491
邀请新用户注册赠送积分活动 799731
科研通“疑难数据库(出版商)”最低求助积分说明 759033