已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Knowledge-Preserving continual person re-identification using Graph Attention Network

计算机科学 人工智能 遗忘 机器学习 领域知识 水准点(测量) 一般化 鉴定(生物学) 图形 深度学习 过程(计算) 理论计算机科学 操作系统 地理 哲学 数学分析 生物 植物 语言学 数学 大地测量学
作者
Zhaoshuo Liu,Chaolu Feng,Shuaizheng Chen,Jun Hu
出处
期刊:Neural Networks [Elsevier BV]
卷期号:161: 105-115
标识
DOI:10.1016/j.neunet.2023.01.033
摘要

Person re-identification (ReID), considered as a sub-problem of image retrieval, is critical for intelligent security. The general practice is to train a deep model on images from a particular scenario (also known as a domain) and perform retrieval tests on images from the same domain. Thus, the model has to be retrained to ensure good performance on unseen domains. Unfortunately, retraining will introduce the so called catastrophic forgetting problem existing in deep learning models. To address this problem, we propose a Continual person re-identification model via a Knowledge-Preserving (CKP) mechanism. The proposed model is able to accumulate knowledge from continuously changing scenarios. The knowledge is updated via a graph attention network from the human cognitive-inspired perspective as the scenario changes. The accumulated knowledge is used to guide the learning process of the proposed model on image samples from new-coming domains. We finally evaluate and compare CKP with fine-tuning, continual learning in image classification and person re-identification, and joint training. Experiments on representative benchmark datasets (Market1501, DukeMTMC, CUHK03, CUHK-SYSU, and MSMT17, which arrive in different orders) demonstrate the advantages of the proposed model in preventing forgetting, and experiments on other benchmark datasets (GRID, SenseReID, CUHK01, CUHK02, VIPER, iLIDS, and PRID, which are not available during training) demonstrate the generalization ability of the proposed model. The CKP outperforms the best comparative model by 0.58% and 0.65% on seen domains (datasets available during training), and by 0.95% and 1.02% on never seen domains (datasets not available during training) in terms of mAP and Rank1, respectively. Arrival order of the training datasets, guidance of accumulated knowledge for learning new knowledge and parameter settings are also discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
style完成签到,获得积分10
刚刚
2秒前
英姑应助Vicktor2021采纳,获得10
3秒前
12完成签到 ,获得积分10
3秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得30
5秒前
非而者厚应助科研通管家采纳,获得30
6秒前
非而者厚应助科研通管家采纳,获得30
6秒前
6秒前
6秒前
科研小牛应助勤劳糜采纳,获得10
6秒前
hins完成签到 ,获得积分10
9秒前
小航发布了新的文献求助10
10秒前
pigff发布了新的文献求助10
11秒前
纯真若菱发布了新的文献求助10
12秒前
小小斌完成签到,获得积分10
15秒前
nini完成签到,获得积分10
15秒前
Tae_Hanazono发布了新的文献求助30
16秒前
谦让的雅青完成签到 ,获得积分10
18秒前
李家静完成签到 ,获得积分10
18秒前
19秒前
19秒前
云是完成签到 ,获得积分10
20秒前
yuki完成签到,获得积分20
21秒前
21秒前
科研通AI2S应助Azusa采纳,获得10
21秒前
22秒前
22秒前
cheng完成签到 ,获得积分10
22秒前
25秒前
25秒前
Ricardo发布了新的文献求助10
25秒前
26秒前
28秒前
木木发布了新的文献求助10
28秒前
Stefani发布了新的文献求助10
29秒前
笨笨的荧荧完成签到 ,获得积分10
30秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788098
求助须知:如何正确求助?哪些是违规求助? 3333579
关于积分的说明 10262519
捐赠科研通 3049385
什么是DOI,文献DOI怎么找? 1673537
邀请新用户注册赠送积分活动 802042
科研通“疑难数据库(出版商)”最低求助积分说明 760477