已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

AI-enabled personalized learning: empowering management students for improving engagement and academic performance

学生参与度 学习管理 知识管理 计算机科学 心理学 数学教育 医学教育 医学
作者
Adil Ellikkal,S. Rajamohan
出处
期刊:Vilakshan [Emerald Publishing Limited]
被引量:2
标识
DOI:10.1108/xjm-02-2024-0023
摘要

Purpose In today’s highly competitive world, the purpose of this research is to emphasize the increasing significance of management education and advocate for the adoption of innovative teaching approaches, specifically focusing on artificial intelligence (AI)-driven personalized learning (PL). This study aims to explore the integration of self-determination theory (SDT) principles into management education, with a primary focus on enhancing student motivation, engagement and academic performance (AP). Design/methodology/approach This interdisciplinary research adopts a multifaceted approach, combining perspectives from AI, education and psychology. The design and methodology involve a thorough exploration of the theoretical foundations of both AI-driven education and SDT. The research demonstrates how these two elements can synergize to create a holistic educational experience. To substantiate the theoretical claims, empirical data-driven analyses are employed, showcasing the effectiveness of AI-enabled personalized learning (AIPL). The study integrates principles from SDT, such as autonomy, competence and relatedness, to create an environment where students are intrinsically motivated, receiving tailored instruction for optimal outcomes. Findings The study, rooted in SDT, demonstrates AIPL’s transformative impact on management education. It positively influences students’ autonomy, competence and relatedness, fostering engagement. Autonomy is a key driver, strongly linked to improved AP. The path analysis model validates these relationships, highlighting AI’s pivotal role in reshaping educational experiences and intrinsically motivating students. Practical implications This study holds substantial significance for educators, policymakers and researchers. The findings indicate that the AIPL model is effective in increasing student interest and improving AP. Furthermore, this study offers practical guidance for implementing AI in management education to empower students, enhance engagement and align with SDT principles. Originality/value Contribute original insights through an interdisciplinary lens. Synthesize AI and SDT principles, providing a roadmap for a more effective educational experience. Empirical data-driven analyses enhance credibility, offering valuable contributions for educators and policymakers in the technology-influenced education landscape.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JacekYu完成签到 ,获得积分10
2秒前
Evian79167发布了新的文献求助10
2秒前
任性雪糕完成签到 ,获得积分10
3秒前
sirius发布了新的文献求助10
3秒前
3秒前
养乐多敬你完成签到 ,获得积分10
4秒前
5秒前
大模型应助Kolalone采纳,获得10
6秒前
cc与车夫发布了新的文献求助10
6秒前
梁馨月完成签到,获得积分20
6秒前
化学之星完成签到,获得积分10
7秒前
勤劳落雁发布了新的文献求助10
7秒前
Carmen完成签到 ,获得积分10
8秒前
9秒前
9秒前
梦璃完成签到 ,获得积分10
10秒前
和谐板栗完成签到 ,获得积分10
13秒前
浮游应助读书的时候采纳,获得10
13秒前
NexusExplorer应助陈玺丞采纳,获得10
14秒前
超帅的碱完成签到,获得积分10
14秒前
adkdad完成签到 ,获得积分10
14秒前
雨林发布了新的文献求助30
14秒前
18秒前
19秒前
19秒前
21秒前
Pupil完成签到,获得积分10
22秒前
23秒前
楠楠发布了新的文献求助10
23秒前
Juniorrr完成签到,获得积分10
23秒前
24秒前
fighting发布了新的文献求助10
25秒前
25秒前
自由的中蓝完成签到 ,获得积分10
26秒前
Juniorrr发布了新的文献求助10
27秒前
YYLLTX完成签到,获得积分10
27秒前
超帅慕晴完成签到,获得积分10
27秒前
Kolalone发布了新的文献求助10
28秒前
清脆钻石完成签到 ,获得积分10
29秒前
陈欣瑶完成签到 ,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934899
求助须知:如何正确求助?哪些是违规求助? 4202596
关于积分的说明 13058057
捐赠科研通 3977151
什么是DOI,文献DOI怎么找? 2179362
邀请新用户注册赠送积分活动 1195516
关于科研通互助平台的介绍 1106915