Multiscale Spatial-Temporal Feature Fusion Neural Network for Motor Imagery Brain-Computer Interfaces

计算机科学 人工智能 特征(语言学) 人工神经网络 运动表象 脑-机接口 模式识别(心理学) 特征提取 计算机视觉 脑电图 神经科学 心理学 语言学 哲学
作者
Jing Jin,Weijie Chen,Ren Xu,Wei Liang,Xiao Wu,Xinjie He,Xingyu Wang,Andrzej Cichocki
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:29 (1): 198-209 被引量:18
标识
DOI:10.1109/jbhi.2024.3472097
摘要

Motor imagery, one of the main brain-computer interface (BCI) paradigms, has been extensively utilized in numerous BCI applications, such as the interaction between disabled people and external devices. Precise decoding, one of the most significant aspects of realizing efficient and stable interaction, has received a great deal of intensive research. However, the current decoding methods based on deep learning are still dominated by single-scale serial convolution, which leads to insufficient extraction of abundant information from motor imagery signals. To overcome such challenges, we propose a new end-to-end convolutional neural network based on multiscale spatial-temporal feature fusion (MSTFNet) for EEG classification of motor imagery. The architecture of MSTFNet consists of four distinct modules: feature enhancement module, multiscale temporal feature extraction module, spatial feature extraction module and feature fusion module, with the latter being further divided into the depthwise separable convolution block and efficient channel attention block. Moreover, we implement a straightforward yet potent data augmentation strategy to bolster the performance of MSTFNet significantly. To validate the performance of MSTFNet, we conduct cross-session experiments and leave-one-subject-out experiments. The cross-session experiment is conducted across two public datasets and one laboratory dataset. On the public datasets of BCI Competition IV 2a and BCI Competition IV 2b, MSTFNet achieves classification accuracies of 83.62% and 89.26%, respectively. On the laboratory dataset, MSTFNet achieves 86.68% classification accuracy. Besides, the leave-one-subject-out experiment is performed on the BCI Competition IV 2a dataset, and MSTFNet achieves 66.31% classification accuracy. These experimental results outperform several state-of-the-art methodologies, indicate the proposed MSTFNet's robust capability in decoding EEG signals associated with motor imagery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观小之应助读书的时候采纳,获得10
刚刚
是ok耶发布了新的文献求助10
刚刚
蔡从安发布了新的文献求助10
刚刚
1秒前
CodeCraft应助de采纳,获得10
2秒前
Qwe发布了新的文献求助10
2秒前
此生不换完成签到 ,获得积分10
2秒前
Twonej应助Tbq采纳,获得30
2秒前
3秒前
侠客完成签到,获得积分10
4秒前
4秒前
小郝已读博完成签到 ,获得积分10
4秒前
5秒前
所所应助瓜瓜采纳,获得10
5秒前
6秒前
戊烷完成签到,获得积分10
6秒前
8秒前
追风发布了新的文献求助10
9秒前
lu完成签到,获得积分10
9秒前
呜哈哈完成签到 ,获得积分10
9秒前
是ok耶完成签到,获得积分10
10秒前
攀攀完成签到 ,获得积分10
10秒前
10秒前
10秒前
HarrisonChan完成签到,获得积分10
11秒前
传奇3应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
乐乐应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
乐乐应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得10
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737343
求助须知:如何正确求助?哪些是违规求助? 5372083
关于积分的说明 15335400
捐赠科研通 4880918
什么是DOI,文献DOI怎么找? 2623158
邀请新用户注册赠送积分活动 1571983
关于科研通互助平台的介绍 1528798