1-Hexadecyl-3-methylimidazolium tetrachloroindate ionic liquid as corrosion inhibitor for mild steel: Insight from experimental, computational, multivariate statistics and multi-quadratic regression based machine learning model

多元统计 离子液体 腐蚀 二次方程 缓蚀剂 回归分析 回归 计算机科学 材料科学 化学 人工智能 机器学习 数学 统计 冶金 有机化学 催化作用 几何学
作者
Ndidiamaka Martina Amadi,Joseph Okechukwu Ezeugo,Chukwunonso Chukwuzuluoke Okoye,John Ifeanyi Obibuenyi,Maduabuchi Arinzechukwu Chidiebere,Dominic O. Onukwuli,Valentine Chikaodili Anadebe
出处
期刊:Results in engineering [Elsevier]
卷期号:24: 103115-103115 被引量:12
标识
DOI:10.1016/j.rineng.2024.103115
摘要

The current study is focused on the synthesis and evaluation of 1-Hexadecyl-3-methylimidazolium tetrachloroindate [C16 mim][In Cl4] based ionic liquid (IL) as a corrosion inhibitor for mild steel in 1M HCl. Various advanced methods were employed in this research, such as potentiodynamic polarization (PDP), quantum chemical computations, molecular dynamics simulations, weight loss assessments, electrochemical impedance spectroscopy (EIS) and multivariate statistics via machine learning models. The ionic liquid (IL) under investigation demonstrated a notable corrosion inhibition efficiency (93.88 % weight loss, 94. % PDP, 75 % EIS). The combine electrochemical approach suggested a mechanism influenced by electron transfer, underscoring the IL's as a mixed-type inhibitor. The experimental data based on weight loss was optimized using response surface methodology (RSM). Maximum inhibition efficiency of 93.72 % was predicted by the RSM model. Also, the machine learning models based on artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) demonstrated good predictive power in analyzing the interactive effects affecting the inhibition process. The adsorption behavior of [C16 mim][In Cl4] on the mild steel surface further conformed to the Langmuir isotherm, demonstrating a monolayer adsorption process. The comprehensive nature of this approach facilitated a more in-depth adsorption process through computational modelling based on DFT and molecular dynamics. The machine learning models aligned credibly with the experimental findings with pronounced degree of accuracy. Thus, these integrated approaches unravel the potential of the studied IL as effective and sustainable corrosion inhibitor for severe acidic environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
liuliuliu发布了新的文献求助10
1秒前
fhkq发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
奔波儿灞完成签到,获得积分10
3秒前
fhkq发布了新的文献求助10
4秒前
4秒前
fhkq发布了新的文献求助10
5秒前
fhkq发布了新的文献求助10
5秒前
fhkq发布了新的文献求助100
5秒前
科研通AI6应助YYY采纳,获得10
5秒前
羞涩的山彤完成签到,获得积分10
5秒前
fhkq发布了新的文献求助10
5秒前
fhkq发布了新的文献求助10
5秒前
豆豆完成签到,获得积分10
6秒前
fhkq发布了新的文献求助10
6秒前
6秒前
Owen应助古德day采纳,获得10
6秒前
阿正嗖啪发布了新的文献求助10
7秒前
奔波儿灞发布了新的文献求助10
7秒前
啊喔完成签到,获得积分20
7秒前
7秒前
黑白完成签到 ,获得积分10
8秒前
spark发布了新的文献求助10
8秒前
长柏发布了新的文献求助30
8秒前
Amadues关注了科研通微信公众号
9秒前
10秒前
小魏哥完成签到,获得积分10
10秒前
111发布了新的文献求助10
11秒前
11秒前
12秒前
asdfzxcv应助刘杲蔚采纳,获得10
12秒前
完美的初蓝完成签到,获得积分10
12秒前
13秒前
求助人员发布了新的文献求助10
13秒前
俊逸随阴关注了科研通微信公众号
13秒前
今后应助11886采纳,获得10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643294
求助须知:如何正确求助?哪些是违规求助? 4760914
关于积分的说明 15020418
捐赠科研通 4801640
什么是DOI,文献DOI怎么找? 2566917
邀请新用户注册赠送积分活动 1524783
关于科研通互助平台的介绍 1484355