Personalized Federated Transfer Learning for Cycle-Life Prediction of Lithium-Ion Batteries in Heterogeneous Clients With Data Privacy Protection

计算机科学 锂(药物) 隐私保护 数据建模 信息隐私 计算机安全 计算机网络 数据库 医学 内分泌学
作者
Cheng‐Geng Huang,He Li,Weiwen Peng,Loon Ching Tang,Zhi‐Sheng Ye
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (22): 36895-36906 被引量:1
标识
DOI:10.1109/jiot.2024.3433460
摘要

Health prognostics within the Internet of Things (IoT) paradigm face several challenges, including data privacy, client drift, and prediction accuracy. Federated learning (FL), as an emerging decentralized machine learning paradigm, has the potential to address these challenges by integrating multiple data silos in a distributed and privacy-preserved fashion. This article develops a novel personalized federated transfer learning (PFTL) framework for customized health prognosis of multiple heterogeneous clients. The framework starts with a powerful initial global prognostic model that is pretrained using a publicly available data set in a central server. The pretrained global model is then distributed to the local clients and fine-tuned separately on their respective private data sets. The fine-tuned local prognostic models are uploaded to the central server for dynamic weighted model aggregation. The aggregated model is then distributed to each client for implementing domain adversarial training to obtain a fine-grained local prognostic model. The proposed PFTL framework embeds a multiscale attention module and a multihead self-attention module parallelly into the deep learning-based prognostic model, which is shared between the central server and each local client. Through experimental verifications from lab testing-based and open-source fast-charging lithium-ion batteries data sets, we demonstrate that the proposed method can achieve accurate cycle-life prediction without compromising data privacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助qizhixu采纳,获得10
刚刚
4秒前
司空沛槐发布了新的文献求助50
5秒前
香蕉觅云应助mao采纳,获得10
6秒前
7秒前
Auston_zhong应助sad采纳,获得10
7秒前
大力的向日葵完成签到,获得积分10
7秒前
believe发布了新的文献求助10
8秒前
8秒前
wanci应助镜羽采纳,获得10
9秒前
13秒前
kytm完成签到,获得积分10
13秒前
无聊的老姆完成签到 ,获得积分10
14秒前
14秒前
很美味发布了新的文献求助10
15秒前
田様应助芋泥夹心采纳,获得10
16秒前
16秒前
lululu0212完成签到,获得积分10
17秒前
18秒前
mao发布了新的文献求助10
18秒前
敏感凝竹完成签到,获得积分10
19秒前
星辰大海应助呦吼。。。采纳,获得10
19秒前
执着的星星完成签到,获得积分10
19秒前
搁浅发布了新的文献求助10
19秒前
20秒前
个性凡儿发布了新的文献求助10
21秒前
21秒前
英姑应助华生采纳,获得30
21秒前
很美味完成签到,获得积分10
22秒前
Jenlisa完成签到 ,获得积分10
23秒前
23秒前
24秒前
24秒前
25秒前
小刘鸭鸭发布了新的文献求助10
25秒前
orixero应助个性凡儿采纳,获得10
25秒前
善学以致用应助个性凡儿采纳,获得10
25秒前
小二郎应助个性凡儿采纳,获得10
25秒前
小蘑菇应助个性凡儿采纳,获得10
25秒前
sansan完成签到 ,获得积分10
25秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794649
求助须知:如何正确求助?哪些是违规求助? 3339446
关于积分的说明 10296040
捐赠科研通 3056142
什么是DOI,文献DOI怎么找? 1676904
邀请新用户注册赠送积分活动 804932
科研通“疑难数据库(出版商)”最低求助积分说明 762216