清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Solid‐State Revolution: Assessing the Potential of Solid Polymer Electrolytes in Lithium‐Ion Batteries

锂(药物) 聚合物电解质 固态 电解质 材料科学 离子 聚合物 快离子导体 化学工程 工程物理 离子电导率 化学 工程类 复合材料 电极 有机化学 心理学 物理化学 精神科
作者
Saeed Hadad,Michael A. Pope,Milad Kamkar,Kam Chiu Tam
出处
期刊:Advanced sustainable systems [Wiley]
被引量:1
标识
DOI:10.1002/adsu.202400532
摘要

Abstract Lithium‐ion batteries (LIBs) are crucial for achieving sustainable energy goals due to their high energy density and long cycle life. They dominate markets like consumer electronics, electric vehicles, and stationary energy storage systems. However, current LIBs use liquid electrolytes, which are toxic, flammable, and their liquid state does not resist dendrite growth, causing battery capacity decline and failure. Additionally, the limited availability of lithium and other metals makes liquid‐based LIBs less sustainable. On the other hand, solid polymer electrolytes (SPEs) offer a safer alternative as they are non‐volatile and can resist dendrite growth. However, ion transport in solids is much more restricted than in liquids, while imperfect solid‐solid interfaces contribute to interfacial resistance leading to lower ionic conductivity and increasing Ohmic losses or requiring battery operation at elevated temperatures. Chemical and mechanical degradation of these interfaces can also result in battery capacity fade, and poorer cyclic performance compared to liquid electrolytes. Understanding the ionic transport mechanisms in SPEs is critical for designing and optimizing the nanostructure of polymers and polymer/electrode interfaces to overcome these limitations. In this review, the fundamental mechanisms of ion transport in SPEs will first be explored. Various state‐of‐the‐art approaches for addressing the key challenges in SPEs and their solutions are then discussed. Furthermore, the current status of SPEs is analyzed to determine their potential for replacing liquid electrolytes in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lili完成签到,获得积分10
1分钟前
SL完成签到,获得积分10
1分钟前
1分钟前
SL发布了新的文献求助10
1分钟前
Ms_Galaxea完成签到,获得积分10
1分钟前
1分钟前
共享精神应助实验狗采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
crown完成签到,获得积分10
2分钟前
3分钟前
3分钟前
实验狗发布了新的文献求助10
3分钟前
hongt05完成签到 ,获得积分10
3分钟前
SCI的芷蝶完成签到 ,获得积分10
4分钟前
瓦力完成签到 ,获得积分10
4分钟前
姜生在树上完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
WYK完成签到 ,获得积分10
6分钟前
6分钟前
冷傲半邪完成签到,获得积分10
6分钟前
wentao发布了新的文献求助10
6分钟前
7分钟前
7分钟前
李燊发布了新的文献求助10
7分钟前
现实的俊驰完成签到 ,获得积分10
7分钟前
Benhnhk21完成签到,获得积分10
8分钟前
8分钟前
9分钟前
9分钟前
yuhang完成签到 ,获得积分10
9分钟前
9分钟前
斯文的傲珊完成签到,获得积分10
9分钟前
研友_nE1dDn发布了新的文献求助20
10分钟前
SciGPT应助研友_nE1dDn采纳,获得10
10分钟前
习月阳完成签到,获得积分10
10分钟前
zilhua完成签到,获得积分10
10分钟前
11分钟前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830495
求助须知:如何正确求助?哪些是违规求助? 3372812
关于积分的说明 10475449
捐赠科研通 3092626
什么是DOI,文献DOI怎么找? 1702209
邀请新用户注册赠送积分活动 818825
科研通“疑难数据库(出版商)”最低求助积分说明 771101