An End-to-end Knowledge Graph Fused Graph Neural Network for Accurate Protein-Protein Interactions Prediction

端到端原则 图形 计算机科学 人工神经网络 人工智能 理论计算机科学
作者
Jie Yang,Yapeng Li,Guoyin Wang,Zhong Chen,Di Wu
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/tcbb.2024.3486216
摘要

Protein-protein interactions (PPIs) are essential to understanding cellular mechanisms, signaling networks, disease processes, and drug development, as they represent the physical contacts and functional associations between proteins. Recent advances have witnessed the achievements of artificial intelligence (AI) methods aimed at predicting PPIs. However, these approaches often handle the intricate web of relationships and mechanisms among proteins, drugs, diseases, ribonucleic acid (RNA), and protein structures in a fragmented or superficial manner. This is typically due to the limitations of non-end-to-end learning frameworks, which can lead to sub-optimal feature extraction and fusion, thereby compromising the prediction accuracy. To address these deficiencies, this paper introduces a novel end-to-end learning model, the Knowledge Graph Fused Graph Neural Network (KGF-GNN). This model comprises three integral components: (1) Protein Associated Network (PAN) Construction: We begin by constructing a PAN that extensively captures the diverse relationships and mechanisms linking proteins with drugs, diseases, RNA, and protein structures. (2) Graph Neural Network for Feature Extraction: A Graph Neural Network (GNN) is then employed to distill both topological and semantic features from the PAN, alongside another GNN designed to extract topological features directly from observed PPI networks. (3) Multi-layer Perceptron for Feature Fusion: Finally, a multi-layer perceptron integrates these varied features through end-to-end learning, ensuring that the feature extraction and fusion processes are both comprehensive and optimized for PPI prediction. Extensive experiments conducted on real-world PPI datasets validate the effectiveness of our proposed KGF-GNN approach, which not only achieves high accuracy in predicting PPIs but also significantly surpasses existing state-of-the-art models. This work not only enhances our ability to predict PPIs with a higher precision but also contributes to the broader application of AI in Bioinformatics, offering profound implications for biological research and therapeutic development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
田様应助挖井的人采纳,获得20
刚刚
1秒前
Jasper应助淡然的毒娘采纳,获得10
1秒前
Hello应助M.采纳,获得10
2秒前
田超发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
传奇3应助1234采纳,获得10
4秒前
不弱小妖完成签到,获得积分10
4秒前
4秒前
研友_VZG7GZ应助鱼尾蓝采纳,获得10
5秒前
思源应助宋敏美采纳,获得10
5秒前
6秒前
6秒前
6秒前
BillowHu完成签到,获得积分10
6秒前
玄博元发布了新的文献求助30
7秒前
Orange应助嘻嘻采纳,获得10
8秒前
zzz完成签到,获得积分10
8秒前
8秒前
称心的慕青应助hh采纳,获得10
9秒前
小小fa完成签到 ,获得积分10
9秒前
Jack关注了科研通微信公众号
9秒前
9秒前
BillowHu发布了新的文献求助10
9秒前
夏xia完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
JamesPei应助北风采纳,获得10
12秒前
LaffiteElla发布了新的文献求助20
12秒前
12秒前
13秒前
所所应助俭朴蜜蜂采纳,获得10
14秒前
爆米花应助蓝白采纳,获得10
14秒前
14秒前
15秒前
芜湖芜湖发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Handbook of Industrial Inkjet Printing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264674
求助须知:如何正确求助?哪些是违规求助? 4424909
关于积分的说明 13774672
捐赠科研通 4300019
什么是DOI,文献DOI怎么找? 2359586
邀请新用户注册赠送积分活动 1355696
关于科研通互助平台的介绍 1316961