亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An End-to-end Knowledge Graph Fused Graph Neural Network for Accurate Protein-Protein Interactions Prediction

端到端原则 图形 计算机科学 人工神经网络 人工智能 理论计算机科学
作者
Jie Yang,Yapeng Li,Guoyin Wang,Zhong Chen,Di Wu
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tcbb.2024.3486216
摘要

Protein-protein interactions (PPIs) are essential to understanding cellular mechanisms, signaling networks, disease processes, and drug development, as they represent the physical contacts and functional associations between proteins. Recent advances have witnessed the achievements of artificial intelligence (AI) methods aimed at predicting PPIs. However, these approaches often handle the intricate web of relationships and mechanisms among proteins, drugs, diseases, ribonucleic acid (RNA), and protein structures in a fragmented or superficial manner. This is typically due to the limitations of non-end-to-end learning frameworks, which can lead to sub-optimal feature extraction and fusion, thereby compromising the prediction accuracy. To address these deficiencies, this paper introduces a novel end-to-end learning model, the Knowledge Graph Fused Graph Neural Network (KGF-GNN). This model comprises three integral components: (1) Protein Associated Network (PAN) Construction: We begin by constructing a PAN that extensively captures the diverse relationships and mechanisms linking proteins with drugs, diseases, RNA, and protein structures. (2) Graph Neural Network for Feature Extraction: A Graph Neural Network (GNN) is then employed to distill both topological and semantic features from the PAN, alongside another GNN designed to extract topological features directly from observed PPI networks. (3) Multi-layer Perceptron for Feature Fusion: Finally, a multi-layer perceptron integrates these varied features through end-to-end learning, ensuring that the feature extraction and fusion processes are both comprehensive and optimized for PPI prediction. Extensive experiments conducted on real-world PPI datasets validate the effectiveness of our proposed KGF-GNN approach, which not only achieves high accuracy in predicting PPIs but also significantly surpasses existing state-of-the-art models. This work not only enhances our ability to predict PPIs with a higher precision but also contributes to the broader application of AI in Bioinformatics, offering profound implications for biological research and therapeutic development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
研友_VZG7GZ应助鲜艳的诗翠采纳,获得10
1分钟前
友好的白柏完成签到 ,获得积分10
1分钟前
李健的小迷弟应助Sandy采纳,获得10
1分钟前
人谷完成签到 ,获得积分10
1分钟前
人谷呀完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
华仔应助羽生结弦的馨馨采纳,获得10
2分钟前
2分钟前
2分钟前
3分钟前
qqq完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
早睡一哥完成签到,获得积分10
4分钟前
002完成签到,获得积分10
4分钟前
包容的剑完成签到 ,获得积分10
4分钟前
5分钟前
003完成签到,获得积分10
5分钟前
淡淡醉波wuliao完成签到 ,获得积分10
5分钟前
5分钟前
Sandy发布了新的文献求助10
5分钟前
5分钟前
5分钟前
Sandy完成签到,获得积分10
5分钟前
传奇3应助天空之城采纳,获得10
5分钟前
5分钟前
5分钟前
天空之城发布了新的文献求助10
5分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777624
求助须知:如何正确求助?哪些是违规求助? 3322988
关于积分的说明 10212874
捐赠科研通 3038350
什么是DOI,文献DOI怎么找? 1667372
邀请新用户注册赠送积分活动 798106
科研通“疑难数据库(出版商)”最低求助积分说明 758229