Ultrasonic-Induced Surface Disordering Promotes Photocatalytic Hydrogen Evolution of TiO2

光催化 材料科学 金红石 锐钛矿 制氢 化学工程 半导体 纳米技术 超声波传感器 分解水 催化作用 光电子学 化学 生物化学 物理 有机化学 声学 工程类
作者
Chunyao Liu,Changhua Wang,Rui Wang,Dashuai Li,Dexin Jin,Bunsho Ohtani,Baoshun Liu,He Ma,Jinglun Du,Yichun Liu,Xintong Zhang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (36): 48649-48659 被引量:3
标识
DOI:10.1021/acsami.4c10977
摘要

Surface disordering has been considered an effective strategy for tailoring the charge separation and surface chemistry of semiconductor photocatalysts. A simple but reliable method to create surface disordering is, therefore, urgently needed for the development of high-performance semiconductor photocatalysts and their practical applications. Herein, we report that the ultrasonic processing, which is commonly employed in the dispersion of photocatalysts, can induce the surface disordering of TiO2 and significantly promote its performance for photocatalytic hydrogen evolution. A 40 min ultrasonic treatment of TiO2 (Degussa P25) enhances the photocatalytic hydrogen production by 42.7 times, achieving a hydrogen evolution rate of 1425.4 μmol g–1 h–1 without any cocatalyst. Comprehensive structural, spectral, and electrochemical analyses reveal that the ultrasonic treatment induces the surface disordering of TiO2, and consequently reduces the density of deep electron traps, extends the separation of photogenerated charges, and facilitates the hydrogen evolution reaction relative to oxygen reduction. The ultrasonic treatment manifests a more pronounced effect on disordering the surface of anatase than rutile, agreeing well with the enhanced photocatalysis of anatase rather than rutile. This study demonstrates that ultrasonic-induced surface disordering could be an effective strategy for the activation of photocatalysts and might hold significant implications for the applications in photocatalytic hydrogen evolution, small molecule activation, and biomass conversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
直率威完成签到,获得积分10
刚刚
欢呼的方盒完成签到,获得积分10
刚刚
lijiuyi发布了新的文献求助10
1秒前
1秒前
3秒前
阔达碧空发布了新的文献求助10
3秒前
唠叨的代芹完成签到,获得积分10
4秒前
hachi完成签到,获得积分10
8秒前
烟花应助欢呼的方盒采纳,获得10
8秒前
搜集达人应助阔达碧空采纳,获得10
9秒前
悦耳的沛文完成签到,获得积分10
9秒前
Zed plus完成签到,获得积分10
10秒前
易朵朵完成签到,获得积分10
11秒前
15秒前
JY发布了新的文献求助50
16秒前
歪no完成签到,获得积分20
16秒前
11完成签到,获得积分10
17秒前
英俊的铭应助从容的曼寒采纳,获得10
18秒前
羊木完成签到,获得积分10
20秒前
歪no发布了新的文献求助10
21秒前
俊逸的刺猬完成签到,获得积分10
23秒前
传奇3应助长欢采纳,获得10
23秒前
25秒前
25秒前
传奇3应助PAD采纳,获得10
25秒前
qing完成签到 ,获得积分10
26秒前
孤独曼冬完成签到,获得积分20
26秒前
ddsgsd完成签到 ,获得积分10
28秒前
29秒前
30秒前
科研通AI5应助guyutang采纳,获得10
33秒前
33秒前
xianyu发布了新的文献求助10
33秒前
沉默的冬寒完成签到 ,获得积分10
36秒前
36秒前
keke完成签到,获得积分10
36秒前
37秒前
39秒前
852应助星星采纳,获得10
40秒前
敏感的半山完成签到,获得积分10
41秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784073
求助须知:如何正确求助?哪些是违规求助? 3329170
关于积分的说明 10240562
捐赠科研通 3044703
什么是DOI,文献DOI怎么找? 1671219
邀请新用户注册赠送积分活动 800191
科研通“疑难数据库(出版商)”最低求助积分说明 759222