Adaptive Preference Measurement with Unstructured Data

计算机科学 非结构化数据 编码(社会科学) 任务(项目管理) 数据科学 分析 入职培训 消费者行为 情报检索 数据挖掘 大数据 营销 心理学 数学 社会心理学 统计 业务 经济 管理
作者
Ryan Dew
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/mnsc.2023.03775
摘要

Many products are most meaningfully described using unstructured data such as text or images. Unstructured data are also common in e-commerce, in which products are often described by photos and text but not with standardized sets of attributes. Whereas much is known about how to efficiently measure consumer preferences when products can be meaningfully described by structured attributes, there is scant research on doing the same for unstructured data. This paper introduces a real-time, adaptive survey design framework for measuring preferences over unstructured data, leveraging Bayesian optimization. By adaptively choosing items to display based on uncertainty around a nonparametric utility model, the proposed method maximizes information gain per question, enabling quick estimation of individual-level preferences. The approach operates on embeddings of the unstructured data, thereby eliminating the requirement for manual coding of product attributes. We apply the method to measuring preferences over clothing and highlight its potential for both the general task of marketing research and the specific task of designing customer onboarding surveys to mitigate the cold-start recommendation problem. We also develop methods for interpreting the nonparametric utility functions, which allow us to reconstruct consumer valuations of discrete attributes, even for attributes that were not considered or available a priori. This paper was accepted by Duncan Simester, marketing. Fundings: Funding for this project was provided by Analytics at Wharton, the Wharton Behavioral Lab, and the Wharton Dean’s Fund. The author also thanks the Govil Family for financial support. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2023.03775 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
SciGPT应助科研通管家采纳,获得20
2秒前
shiqiang mu应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
东方樱应助科研通管家采纳,获得10
2秒前
昏睡的蟠桃应助科研通管家采纳,获得100
2秒前
乔垣结衣应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
科奇应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
shiqiang mu应助科研通管家采纳,获得10
3秒前
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
时尚的初柔完成签到,获得积分10
6秒前
乾乾完成签到,获得积分10
7秒前
清脆的白开水完成签到,获得积分10
8秒前
pragmatic完成签到,获得积分10
17秒前
17秒前
寂寞的季节69完成签到 ,获得积分10
19秒前
争当科研巨匠完成签到,获得积分10
20秒前
20秒前
zong240221完成签到 ,获得积分10
20秒前
luki完成签到,获得积分10
21秒前
24秒前
24秒前
mzhnx完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
26秒前
26秒前
29秒前
30秒前
yyy完成签到,获得积分10
31秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864401
求助须知:如何正确求助?哪些是违规求助? 3406805
关于积分的说明 10651385
捐赠科研通 3130707
什么是DOI,文献DOI怎么找? 1726570
邀请新用户注册赠送积分活动 831812
科研通“疑难数据库(出版商)”最低求助积分说明 780020