Mind the gap: Modelling difference between censored and uncensored electric vehicle charging demand

审查(临床试验) 审查制度 供求关系 计算机科学 竞争对手分析 需求预测 峰值需求 需求管理 计量经济学 电动汽车 运筹学 经济 工程类 业务 微观经济学 营销 法学 电气工程 功率(物理) 宏观经济学 物理 量子力学 政治学
作者
Frederik Boe Hüttel,Filipe Rodrigues,Francisco C. Pereira
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:153: 104189-104189 被引量:8
标识
DOI:10.1016/j.trc.2023.104189
摘要

Electric vehicle charging demand models, with charging records as input, will inherently be biased toward the supply of available chargers. These models often fail to account for demand lost from occupied charging stations and competitors. The lost demand suggests that the actual demand is likely higher than the charging records reflect, i.e., the true demand is latent (unobserved), and the observations are censored. As a result, machine learning models that rely on these observed records for forecasting charging demand may be limited in their application in future infrastructure expansion and supply management, as they do not estimate the true demand for charging. We propose using censorship-aware models to model charging demand to address this limitation. These models incorporate censorship in their loss functions and learn the true latent demand distribution from observed charging records. We study how occupied charging stations and competing services censor demand using GPS trajectories from cars in Copenhagen, Denmark. We find that censorship occurs up to 61% of the time in some areas of the city. We use the observed charging demand from our study to estimate the true demand and find that censorship-aware models provide better prediction and uncertainty estimation of actual demand than censorship-unaware models. We suggest that future charging models based on charging records should account for censoring to expand the application areas of machine learning models in supply management and infrastructure expansion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助科研通管家采纳,获得10
1秒前
高丽华完成签到,获得积分10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
2秒前
wcj发布了新的文献求助10
3秒前
科研通AI5应助虚幻的不愁采纳,获得10
3秒前
lhtyzcg发布了新的文献求助10
3秒前
一颗西红柿应助zyw0532采纳,获得500
4秒前
言言言言发布了新的文献求助10
5秒前
7秒前
润润润完成签到 ,获得积分10
9秒前
10秒前
10秒前
白菜发布了新的文献求助10
12秒前
13秒前
lizhiqian2024发布了新的文献求助10
13秒前
14秒前
ry发布了新的文献求助10
16秒前
16秒前
19秒前
19秒前
科研通AI5应助TszPok采纳,获得10
20秒前
22秒前
23秒前
QL发布了新的文献求助10
24秒前
25秒前
打打应助不安的煜城采纳,获得10
26秒前
huangyifan发布了新的文献求助10
26秒前
自然的如南完成签到,获得积分10
26秒前
华仔应助猫毛采纳,获得10
26秒前
26秒前
27秒前
29秒前
30秒前
Niko发布了新的文献求助10
30秒前
小马甲应助瀚森采纳,获得10
31秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806839
求助须知:如何正确求助?哪些是违规求助? 3351563
关于积分的说明 10354783
捐赠科研通 3067340
什么是DOI,文献DOI怎么找? 1684500
邀请新用户注册赠送积分活动 809737
科研通“疑难数据库(出版商)”最低求助积分说明 765635