Cements and concretes materials characterisation using machine‐learning‐based reconstruction and 3D quantitative mineralogy via X‐ray microscopy

显微镜 X射线 矿物学 材料科学 光学显微镜 地质学 复合材料 光学 扫描电子显微镜 物理
作者
R. L. Mitchell,Andy Holwell,Giacomo Torelli,John L. Provis,Kajanan Selvaranjan,Daniel A. Geddes,Antonia S. Yorkshire,Sarah Kearney
出处
期刊:Journal of Microscopy [Wiley]
卷期号:294 (2): 137-145 被引量:10
标识
DOI:10.1111/jmi.13278
摘要

Abstract 3D imaging via X‐ray microscopy (XRM), a form of tomography, is revolutionising materials characterisation. Nondestructive imaging to classify grains, particles, interfaces and pores at various scales is imperative for our understanding of the composition, structure, and failure of building materials. Various workflows now exist to maximise data collection and to push the boundaries of what has been achieved before, either from singular instruments, software or combinations through multimodal correlative microscopy. An evolving area on interest is the XRM data acquisition and data processing workflow; of particular importance is the improvement of the data acquisition process of samples that are challenging to image, usually because of their size, density (atomic number) and/or the resolution they need to be imaged at. Modern advances include deep/machine learning and AI resolutions for this problem, which address artefact detection during data reconstruction, provide advanced denoising, improved quantification of features, upscaling of data/images, and increased throughput, with the goal to enhance segmentation and visualisation during postprocessing leading to better characterisation of samples. Here, we apply three AI and machine‐learning‐based reconstruction approaches to cements and concretes to assist with image improvement, faster throughput of samples, upscaling of data, and quantitative phase identification in 3D. We show that by applying advanced machine learning reconstruction approaches, it is possible to (i) vastly improve the scan quality and increase throughput of ‘thick’ cores of cements/concretes through enhanced contrast and denoising using DeepRecon Pro, (ii) upscale data to larger fields of view using DeepScout and (iii) use quantitative automated mineralogy to spatially characterise and quantify the mineralogical/phase components in 3D using Mineralogic 3D. These approaches significantly improve the quality of collected XRM data, resolve features not previously accessible, and streamline scanning and reconstruction processes for greater throughput.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
young发布了新的文献求助10
刚刚
认真的柏柳完成签到 ,获得积分10
2秒前
华仔应助zhuangbaobao采纳,获得10
3秒前
4秒前
苏远山爱吃西红柿完成签到,获得积分10
5秒前
6秒前
尔尔完成签到 ,获得积分10
6秒前
大方雁露发布了新的文献求助20
7秒前
zehua309完成签到,获得积分10
8秒前
ggg完成签到 ,获得积分10
11秒前
代代完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
852应助科研通管家采纳,获得10
14秒前
14秒前
ding应助科研通管家采纳,获得10
14秒前
Jared应助科研通管家采纳,获得10
14秒前
科目三应助科研通管家采纳,获得10
14秒前
Dawei_YZU应助科研通管家采纳,获得10
14秒前
Jared应助科研通管家采纳,获得10
14秒前
Akim应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得20
15秒前
上官若男应助科研通管家采纳,获得10
15秒前
慕青应助科研通管家采纳,获得10
15秒前
Jared应助科研通管家采纳,获得10
15秒前
Dawei_YZU应助科研通管家采纳,获得10
15秒前
15秒前
rora完成签到 ,获得积分10
15秒前
北辰完成签到,获得积分10
15秒前
情怀应助拾壹采纳,获得10
16秒前
Zetlynn完成签到,获得积分10
16秒前
呵呵喊我完成签到 ,获得积分10
19秒前
ywzwszl完成签到,获得积分0
19秒前
神勇友灵完成签到,获得积分10
19秒前
孤蚀月完成签到,获得积分10
24秒前
magic完成签到 ,获得积分10
25秒前
26秒前
BBA完成签到 ,获得积分10
26秒前
zzz完成签到 ,获得积分10
27秒前
说话要严谨完成签到 ,获得积分10
27秒前
滴滴答答完成签到 ,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539257
求助须知:如何正确求助?哪些是违规求助? 4625999
关于积分的说明 14597371
捐赠科研通 4566854
什么是DOI,文献DOI怎么找? 2503668
邀请新用户注册赠送积分活动 1481567
关于科研通互助平台的介绍 1453146