A Classification Method for Maize Leaf Disease Based on SimCLR and Triplet Attention

农学 农业工程 工程类 数学 生物
作者
Xiao Ma,TianLiang Dong,Guan shi Ye,Tang You,Qinghai Wu
出处
期刊:Applied Engineering in Agriculture [American Society of Agricultural and Biological Engineers]
卷期号:40 (1): 29-39
标识
DOI:10.13031/aea.15815
摘要

Highlights Improving the robustness of maize leaf disease classification models in complex environments using multiple data enhancement methods. Fusing ResNet50 with the triplet attention mechanism to improve feature extraction. Reducing the use of labeled data to some extent by using SimCLR. The classification accuracy of four different leaf types was 91.87%, which was higher than other compared models. Abstract. Deep learning methods for classifying maize leaf diseases often need a lot of labeled data for training during the model training phase, but labeling data is sometimes difficult and expensive. In addition, complicated environmental circumstances can readily impede the recognition effect. In order to solve this issue, SimCLR and the triplet attention mechanism were coupled to create a system for classifying maize leaf diseases. Firstly, to increase the robustness of the model, several data enhancement techniques were used to imitate the interference of complex components in the natural environment. Secondly, the use of labeled data was minimized by learning the similarity between related categories using a self-supervised SimCLR framework. The feature extraction network simultaneously employed a triplet attention mechanism to enhance the model’s ability to extract information about the interactions between space and channel, improve attention to discriminative features, and lessen interference from complex factors. In order to verify the effects of incorporating SimCLR and triplet attention mechanisms, this work used three different types of maize leaf diseases and healthy leaves as experimental objects. The final enhanced model was compared and analyzed with seven widely used image classification models. The experimental results demonstrated that the maize leaf disease classification model suggested in this article effectively enhanced the classification performance of maize leaf diseases containing complex factors of interference with the test set, with the network model proposed in this article having an average classification accuracy of 91.87%, better than the seven comparative models and requiring no additional labeled data during the training process. Keywords: Image classification, Maize leaf disease, Self-supervised learning, SimCLR, Triplet attention module.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿白发布了新的文献求助10
1秒前
自觉秋完成签到,获得积分10
3秒前
5秒前
haha完成签到,获得积分10
6秒前
Chali完成签到,获得积分20
6秒前
丘比特应助lss采纳,获得10
6秒前
FashionBoy应助鳗鱼文涛采纳,获得10
6秒前
水何澹澹完成签到,获得积分0
7秒前
7秒前
情怀应助热乎乎的小空气采纳,获得10
8秒前
8秒前
8秒前
haha发布了新的文献求助10
10秒前
踏实的梦松完成签到,获得积分10
10秒前
小蘑菇应助迷路的豌豆采纳,获得10
11秒前
11秒前
Chali发布了新的文献求助10
11秒前
旋律完成签到,获得积分10
12秒前
12秒前
阿白完成签到 ,获得积分10
12秒前
12秒前
pppy发布了新的文献求助30
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
学术蜗牛发布了新的文献求助10
13秒前
甜蜜菠萝发布了新的文献求助10
14秒前
Akim应助Cheryy采纳,获得10
14秒前
鳗鱼文涛完成签到,获得积分20
14秒前
小鲸鱼发布了新的文献求助10
15秒前
852应助Survivor采纳,获得10
15秒前
科研通AI5应助殷勤的可兰采纳,获得10
15秒前
鳗鱼文涛发布了新的文献求助10
17秒前
17秒前
Laus发布了新的文献求助10
17秒前
lss发布了新的文献求助10
18秒前
18秒前
旋律发布了新的文献求助10
18秒前
19秒前
19秒前
21秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3866846
求助须知:如何正确求助?哪些是违规求助? 3409198
关于积分的说明 10662139
捐赠科研通 3133354
什么是DOI,文献DOI怎么找? 1728165
邀请新用户注册赠送积分活动 832728
科研通“疑难数据库(出版商)”最低求助积分说明 780407